Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias


CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

Online
ISSN
1553-3840
See all formats and pricing
More options …

A review of Tunisian medicinal plants with anticancer activity

Wissem Aidi Wannes
  • Corresponding author
  • Laboratory of Aromatic and Medicinal Plants, Biotechnologic Center Borj-Cedria Technopark, Hammam-Lif, Tunisia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Moufida Saidani Tounsi
  • Laboratory of Aromatic and Medicinal Plants, Biotechnologic Center Borj-Cedria Technopark, Hammam-Lif, Tunisia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brahim Marzouk
  • Laboratory of Aromatic and Medicinal Plants, Biotechnologic Center Borj-Cedria Technopark, Hammam-Lif, Tunisia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-13 | DOI: https://doi.org/10.1515/jcim-2017-0052

Abstract

Cancer is a major public health problem in the world. The use of the medicinal plants in cancer prevention and management is frequent in Africa, especially in Tunisia, and it is transmitted from generation to generation within cultures. Many previous studies showed that a wide range of Tunisian medicinal plants exerted cytotoxic and anticancer activity. A comprehensive review was conducted to collect information from scientific journal articles, including indigenous knowledge researches, about Tunisian medicinal plants used for the prevention and management of cancer. The aim of this review article is to provide the reader with information concerning the importance of Tunisian medicinal plants in the prevention and management of cancer and to open the door for the health professionals and scientists working in the field of pharmacology and therapeutics to produce new drug formulations to treat different types of cancer.

Keywords: anticancer potential; cancer; cytotoxicity; medicinal plants; Tunisia

References

  • [1]

    Kumar S, Saini M, Kumar V, Prakash O, Arya R, Rana M, Traditional medicinal plants curing diabetes: a promise for today and tomorrow. Asian J Trad Med. 2012;7:78–88.Google Scholar

  • [2]

    World Health Organization. Attaining the nine global noncommunicable diseases targets; a shared responsibility. Geneva: WHO, 2014. Global Status Report on noncommunicable diseases.Google Scholar

  • [3]

    Motaleb MA. Selected medicinal plants of Chittagong hill tracts. Dhaka Bangladesh: International Union for Conservation of Nature, 2011:116.Google Scholar

  • [4]

    Ipek E, Zeytinoglu H, Okay S, Tuylu B, Kurkouglu M, Hisnu C, Genotoxicity and antigenotoxicity of Origanumoil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chem. 2005;93:551–6.CrossrefGoogle Scholar

  • [5]

    You H, Jin H, Khaldi A, Kwak M, Lee T, Khaine I, Plant diversity in different bioclimatic zones in Tunisia. J Asia-Pacific Biodiv. 2016;9:56–62.CrossrefGoogle Scholar

  • [6]

    Aidi Wannes W, Marzouk B. Research progress of Tunisian medicinal plants used for acute diabetes. J Acute Dis. 2016;5:357–63.CrossrefGoogle Scholar

  • [7]

    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Int Ag Res Cancer, 2013. 1.0 Available at: Lyon, France http://globocan.iarc.fr.

  • [8]

    Bray F, Moller B. Predicting the future burden of cancer. Nat Rev Cancer. 2005;6:63–74.Google Scholar

  • [9]

    Boumelha J. Tackling cancer the Tunisian way. Cancer World. 2007;1:34–9.Google Scholar

  • [10]

    National Cancer Institute. What you need to know about melanoma and other skin cancers. USA: NIH publication, 2010.Google Scholar

  • [11]

    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.PubMedCrossrefGoogle Scholar

  • [12]

    Dou P, Yuan X. A Chinese medicinal plant to combat cancer. Asia Biotech. 2007;11:1192–4.Google Scholar

  • [13]

    Moudi M, Go R, Yien CY, Nazre M. Vinca alkaloids. Int J Prev Med. 2013;4:1231–5.PubMedGoogle Scholar

  • [14]

    Wall ME, Wani MC. Camptothecin and taxol: from discovery to clinic. J Ethnopharmacol. 1996;51:239–54.CrossrefPubMedGoogle Scholar

  • [15]

    Demain AL, Vaishnav P. Natural products for cancer chemotherapy. Micro Biotechnol. 2011;4:687–99.CrossrefGoogle Scholar

  • [16]

    World Health Organization. Tunisia – Cancer Country Profiles. WHO, 2014.Google Scholar

  • [17]

    Jelassi A, Zardi Bergaoui A, Ben Nejma A, Bouajila J, Ben Jannet H. Two new unusual monoterpene acid glycosides from Acacia Cyclops with potential cytotoxic activity. Bioorg Med Chem Letters. 2014;24:3777–81.CrossrefGoogle Scholar

  • [18]

    Bouhlel Chatti I, Limem I, Boubaker J, Skandrani I, Kilani S, Bhouri W, Phytochemical, antibacterial, antiproliferative, and antioxidant potentials and DNA damage-protecting activity of Acacia salicina extracts. J Med Food. 2009;12:675–83.PubMedCrossrefGoogle Scholar

  • [19]

    Hichri F, Znati M, Ben Jannet H, Bouajila J. A new sesquiterpene lactone and secoguaianolides from Achillea cretica L. growing in Tunisia. Ind Crops Prod. 2015;77:735–40.CrossrefGoogle Scholar

  • [20]

    Touihri I, Boukhris M, Marrakchi N, Luis J, Hanchi B, Kallech-Ziri O. Chemical composition and biological activities of Allium rosum L. var. grandiflorum Briq. Essential oil J Oleo Sci. 2016;64:869–79.Google Scholar

  • [21]

    Hadji Sfaxi I, Ferraro D, Fasano E, Pani G, Limam F, Marzouki MN. Inhibitory effects of a manganese superoxide dismutase isolated from garlic (Allium Sativum L.) on in vitro tumoral cell growth. Biotechnol Prog. 2009;25:257–64.CrossrefPubMedGoogle Scholar

  • [22]

    Akrout A, Gonzalez LA, El Jani H. Antioxidant and antitumor activities of Artemisia campestris and Thymelaea hirsuta from southern Tunisia. Food Chem Toxicol. 2011;49:342–347.CrossrefPubMedGoogle Scholar

  • [23]

    Khlifi D, Sghaier RM, Amouri S, Laouini D, Hamdi M, Bouajila J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem Toxicol. 2013;55:202–08.PubMedCrossrefGoogle Scholar

  • [24]

    Teyeb H, Zanina N, Neffati M, Douki W, Najjar MF. Cytotoxic and antibacterial activities of leaf extracts of Astragalus gombiformis Pomel (Fabaceae) growing wild in Tunisia. Turk J Biol. 2012;6:53–58.Google Scholar

  • [25]

    Ben Mansour R, Ben Haj Jilani I, Bouaziz M, Gargouri B, Elloumi N, Elloumi N, Phenolic contents and antioxidant activity of ethanolic extract of Capparis spinosa. Cytotechnol. 2016;68:135–142.CrossrefGoogle Scholar

  • [26]

    Hafsaa J, Mkadmini Hammi K, Ben Khedher MR, Smacha MA, Charfeddine B, Limem K. Inhibition of protein glycation, antioxidant and antiproliferative activities of Carpobrotus edulis extracts. Biomed Pharmacother. 2016;84:1496–1503.PubMedCrossrefGoogle Scholar

  • [27]

    Sassi A, Bouhlel I, Mustapha N, Mokdad-Bezeouich I, Chaabane F, Ghedira K, Assessment in vitro of the genotoxicity, antigenotoxicity and antioxidant of Ceratonia siliqua L. extracts in murine leukaemia cells L1210 by comet assay. Regulatory Toxicol Pharmacol . 2016;77:117–124.CrossrefGoogle Scholar

  • [28]

    Ben Jemia M, Kchouk ME, Senatore F, Autore G, Marzocco S, De Feo V, Antiproliferative activity of hexane extract from Tunisian Cistus libanotis, Cistus monspeliensis and Cistus villosus. Chem Central J. 2013;7:47–54.CrossrefGoogle Scholar

  • [29]

    Chawech R, Jarraya R, Girardi C, Vansteelandt M, Marti G, Nasri I, Cucurbitacins from the leaves of Citrullus colocynthis (L.) Schrad. Molecules. 2015;20:18001–015.CrossrefPubMedGoogle Scholar

  • [30]

    Hassine M, Zardi-Berguaoui M, Znati M, Flamini G, Ben Jannet H, Hamza MA. Chemical composition, antibacterial and cytotoxic activities of the essential oil from the flowers of Tunisian Convolvulus althaeoides L. Nat Product Res. 2014;28:769–775.CrossrefGoogle Scholar

  • [31]

    Csupor-Löffler B, Hajdú Z, Zupkó I, Molnár J, Forgo P, Vasas A, Antiproliferative constituents of the roots of Conyza canadensis. Planta Med. 2011;77:1183–88.CrossrefPubMedGoogle Scholar

  • [32]

    Kaouthar L, Edziri H, Bouzidi A, Ali MM, Aouni M, Mastouri M, Antioxidative and cytotoxic activities of bioactive compounds from Cotula coronopifolia (L.). Acta Velit. 2016;3:108–114 .Google Scholar

  • [33]

    Mustapha N, Mokdad-Bz/ouicha J, Maatouk M, Ghedira K, Hennebelle T, Chekir-ghedira L. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma. Melanoma Res. 2016;26:211–22.CrossrefPubMedGoogle Scholar

  • [34]

    Belkhir M, Dhaouadi K, Rosa A, Atzeri A, Nieddu M, Tuberoso CIG, Protective effects of azarole polyphenolic extracts against oxidative damage using in vitro biomolecular and cellular models. Ind Crops Prod . 2016;86:239–56.CrossrefGoogle Scholar

  • [35]

    Mraihi F, Fadhil H, Trabelsi-Ayadi M, Cherif JK. Chemical characterization by HPLC-DAD-ESI/MS of flavonoids from hawthorn fruits and their inhibition of human tumor growth. J New Sci. 2015;3:840–46.Google Scholar

  • [36]

    Nguir A, Znati M, Garrab M, Flamini G, Hamza MA, Ben Jannet H. Hydrodistillation kinetic and biological investigations of essential oils from the Tunisian Crithmum maritimum L. J Tun Chem Soc. 2015;17:83–94.Google Scholar

  • [37]

    Riahi-Chebbi I, Haoues M, Essafi M, Zakraoui O, Fattouch S, Karoui H. Quince peel polyphenolic extract blocks human colon adenocarcinoma LS174 cell growth and potentiates 5-fluorouracil efficacy. Cancer Cell Int. 2016;16:1–15.PubMedGoogle Scholar

  • [38]

    Fattouch S, Caboni P, Coroneo V, Tuberoso CI, Angioni A, Dessi S, Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J Agric Food Chem. 2007;55:963–69.CrossrefPubMedGoogle Scholar

  • [39]

    Khlifi D, Hayouni EA, Valentin A, Cazaux S, Moukarzel B, Hamdi M. LC-MS analysis, anticancer, antioxidant and antimalarial activities of Cynodon dactylon L. extracts. Ind Crops Prod. 2013;45:240–47.CrossrefGoogle Scholar

  • [40]

    Kilani-Jaziri S, Neffati A, Limem I, Boubaker J, Skandrani I, Ben Sghaier M, Relationship correlation of antioxidant and antiproliferative capacity of Cyperus rotundus products towards K562 erythroleukemia cells. Chem Bio Interac. 2009;181:85–94.CrossrefGoogle Scholar

  • [41]

    Kilani S, Ben Sghaier M, Limem I, Bouhlel I, Boubaker J, Bhouri W, In vitro evaluation of antibacterial, antioxidant, cytotoxic and apoptotic activities of the tubers infusion and extracts of Cyperus rotundus. Biores Technol. 2008;99:9004–008.CrossrefGoogle Scholar

  • [42]

    Chaabane F, Pinon A, Simon A, Ghedira K, Chekir-Ghedira L. Chloroform leaf extract of Daphne gnidium inhibits growth of melanoma cells and enhances melanogenesis of B16-F0 melanoma. South Afr J Botany. 2014;90:80–6.CrossrefGoogle Scholar

  • [43]

    Bellila A, Tremblay C, Pichette A, Marzouk B, Mshvildadze V, Lavoie S, Cytotoxic activity of withanolides isolated from Tunisian Datura metel L. Phytochem. 2011;72:2031–36.CrossrefGoogle Scholar

  • [44]

    Touihri I, Kallech-Ziri O, Boulila A, Fatnassi S, Marrakchi N, Luis J, Ecballium elaterium (L.) A. Rich. seed oil: Chemical composition and antiproliferative effect on human colonic adenocarcinoma and fibrosarcoma cancer cell lines. Arab J Chem. 2015; http://dx.doi.org/10.1016/j.arabjc.2015.02.023.

  • [45]

    Khouidhi B, Zmantar T, Bakhrouf A. Anticariogenic and cytotoxic activity of clove essential oil (Eugenia caryophyllata) against a large number of oral pathogens. Anals Microbio. 2010;60:599–04.Google Scholar

  • [46]

    Ben Jannet S, Hymery N, Bourgou S, Jdey A, Lachaal M, Magné C, Antioxidant and selective anticancer activities of two Euphorbia species in human acute myeloid leukemia. Biomed Pharmacother. 2017;90:375–85.CrossrefPubMedGoogle Scholar

  • [47]

    Corea G, Di Pietro A, Dumontet C, Fattorusso E, Lanzotti V. Jatrophane diterpenes from Euphorbia spp as modulators of multidrug resistance in cancer therapy. Phytochem. 2009;8:431–47.CrossrefGoogle Scholar

  • [48]

    Nguir A, Mabrouk H, Douki W, Ben Ismail M, Ben Jannet H, Flamini G, Chemical composition and bioactivities of the essential oil from different organs of Ferula communis L. growing in Tunisia. Med Chem Res. 2016;25:515–25.CrossrefGoogle Scholar

  • [49]

    Znati M, Ben Jannet H, Cazaux S, Bouajila J. Chemical composition, biological and cytotoxic activities of plant extracts and compounds isolated from Ferula lutea. Molecules. 2014a;19:2733–47.CrossrefGoogle Scholar

  • [50]

    Jabrane A, Ben Jannet H, Mighri Z, Mirjolet JF, Duchamp O, Harzallah-Skhiri F, Tnew sesquiterpene derivatives from the Tunisian endemic Ferula Tunetana Pom. Chem Biodivers. 2010;7:392–9.CrossrefGoogle Scholar

  • [51]

    Ben Mansour R, Gargouri B, Elloumi N, Ben Haj Jilani I, Gharbi-Gammar Z, Lassoued S. Investigation of antioxidant activity of alcoholic extract of Globularia alypum L. J Med Plants Res. 2012;6:4193–9.Google Scholar

  • [52]

    Es-Safi NE, Khlifi S, Kerhoas L, El Abbouyi A, Ducrot PH. Antioxidant constituents of the aerial parts of Globularia alypum growing in Morocco. J Nat Prod. 2005;68:1293–6.CrossrefPubMedGoogle Scholar

  • [53]

    Bourogaa E, Bertrand J, Despeaux M, Jarraya R, Fabre N, Payrastre L, Hammada scoparia flavonoids and rutin kill adherent and chemoresistant leukemic cells. Leuk Res. 2011;35:1093–101 10.1007/s00044-016-1506-1.PubMedCrossrefGoogle Scholar

  • [54]

    Ghali W, Vaudry D, Jouenne T, Marzouki MN. Assessment of cyto-protective, antiproliferative and antioxidant potential of a medicinal plant Jatropha podagrica. Ind Crops Prod. 2013;44:111–118.CrossrefGoogle Scholar

  • [55]

    Liu WW, Zhang Y, Yuan CM, Yu C, Ding JY, Li XX, Japodagricanones A and B, novel diterpenoids from Jatropha podagrica. Fitoter. 2014;98:156–9.CrossrefGoogle Scholar

  • [56]

    Chaieb K, Kouidhi B, Ben Slama R, Fadhila K, Zmantar T, Bakhrouf A. Cytotoxicity, antibacterial, antioxidant, and antibiofilm properties of Tunisian Juglans regia bark extract. J Herbs Spices Med Plants. 2013;19:168–79.CrossrefGoogle Scholar

  • [57]

    Thakur S. Juglone: A therapeutic phytochemical from Juglans regia L. J Med Plants Resr. 2011;5:5324–30.Google Scholar

  • [58]

    Segura-Aguilar J, Jönsson K, Tidefelt U, Paul C, The cytotoxic effects of 5-OH-1, 4-napthoquinone and 5,8-diOH-1, 4-napthoquinone on doxorubicin- resistant human leukemia cells (HL-60). Leuk Res. 1992;16:631–7.CrossrefGoogle Scholar

  • [59]

    Sugie S, Okamoto K, Rahman KMW, Tanaka T, Kawai K, Yamahar J, Inhibitory effects of plumbagin and juglone on azoxymethane-induced intestinal carcinogenesis in rats. Cancer Lett. 1998;127:177–83.PubMedCrossrefGoogle Scholar

  • [60]

    Cenas N, Prast S, Nivinskas H, Sarlauskas J, Arner ES. Interactions of nitroaromatic compounds with the mammalian selenoprotein thioredoxin reductase and the relation to induction of apoptosis in human cancer cells. J Biol Chem. 2006;281:5593–83.CrossrefPubMedGoogle Scholar

  • [61]

    Xu HL, Yu XF, Qu SC, Qu XR, Jiang YF. Juglone, from Juglans mandshruica Maxim, inhibits growth and induces apoptosis in human leukemia cell HL‐60 through a reactive oxygen species‐dependent mechanism. Food Chem Toxicol. 2012;50:590–6.CrossrefPubMedGoogle Scholar

  • [62]

    Zhang W, Liu A, Li Y, Zhao X, Lv S, Zhu W, Anticancer activity and mechanism of juglone on human cervical carcinoma Hela cells. Can J Pharmacol. 2012;90:1553–8 10.1016/j.jsps.2016.10.010.CrossrefGoogle Scholar

  • [63]

    Fang F, Qin Y, Qi L, Fang Q, Zhao L, Chen S, Juglone exerts antitumor effect in ovarian cancer cells. Iran J Basic Med Sci. 2015;18:544–8.PubMedGoogle Scholar

  • [64]

    Chaibi R, Romdhane M, Ferchichi A, Bouajila A. Assessment of antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of Henna (Lawsonia inermis) flowers. J Nat Prod. 2015;8:85–92.Google Scholar

  • [65]

    Arun P, Purushotham KG, Jayarani JJ, Kumari V. In vitro antibacterial activity and flavonoid contents of L. inermis (Henna). Int J Pharm Tech Res. 2010;2:1178–81.Google Scholar

  • [66]

    Surveswaran S, Cai YZ, Corke H, Sun M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 2007;102:938–53.CrossrefGoogle Scholar

  • [67]

    Krifa M, Skandrani I, Pizzi A, Nasr N, Ghedira Z, Mustapha N, An aqueous extract of Limoniastrum guyonianum gall induces anti-tumor effects in melanoma-injected mice via modulation of the immune response. Food Chem Toxicol. 2014;69:76–85.CrossrefPubMedGoogle Scholar

  • [68]

    Medini F, Bourgou S, Lalancette K, Snoussi M, Mkadmini K, Coté I, Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages. South Afr J Bot. 2015;99:158–64.CrossrefGoogle Scholar

  • [69]

    Ghali W, Vaudry D, Jouenne T, Marzouki MN. Lycium europaeum fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells. Nutr Cancer. 2015;67:637–46.CrossrefPubMedGoogle Scholar

  • [70]

    Zarai Z, Kadri A, Ben Chobba I, Ben Mansour R, Mejdoub H, Gharsallah N. The in vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis 2011; 10: 161-8. Lipids Health Dis. 2011;10:161–8.Google Scholar

  • [71]

    Chabir N, Romdhane M, Valentin A, Moukarzel B, Marzoug HN, Brahim NB, Chemical study and antimalarial, antioxidant, and anticancer activities of Melaleuca armillaris (Sol Ex Gateau) Sm essential oil. J Med Food. 2011;14:1383–8 10.1371/journal.pone.0155264.PubMedCrossrefGoogle Scholar

  • [72]

    Skandrani I, Boubakera J, Bouhlel I, Limem I, Ghedira K, Chekir-Ghedira L. Leaf and root extracts of Moricandia arvensis protect against DNA damage in human lymphoblast cell K562 and enhance antioxidant activity. Env Toxicol Pharmaco. 2010;30:61–7.CrossrefGoogle Scholar

  • [73]

    Bourgou S, Pichette A, Marzouk B, Legault J. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. South Afr J Bot. 2010;76:210–16.CrossrefGoogle Scholar

  • [74]

    Jrah Harzallah H, Kouidhi B, Flamini G, Bakhrouf A, Mahjoub T. Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella sativa essential oil and thymoquinone. Food Chem. 2011;129:1469–74 10.1016/j.arabjc.2015.02.023.CrossrefGoogle Scholar

  • [75]

    Boubaker J, Chaabane F, Bedoui A, Aloui R, Ben Ahmed B, Ghedira K, Antitumoral potency of methanolic extract from Nitraria retusa leaves via its immunomodulatory effect. Cancer Cell Int. 2015;15:82–9.PubMedCrossrefGoogle Scholar

  • [76]

    Barrajón-Catalána E, Taamallib A, Quirantes-Pinéc R, Roldan-Segurac C, Arráez-Román D, Segura-Carreteroc A, Differential metabolomic analysis of the potential antiproliferativemechanism of olive leaf extract on the JIMT-1 breast cancer cell line. J Pharm Biomed Anal. 2015;105:156–62.CrossrefPubMedGoogle Scholar

  • [77]

    Ghribi L, Ben Nejma A, Besbes M, Harzalla-Skhiri F, Flamini G, Ben Jannet H. Chemical composition, cytotoxic and antibacterial activities of the essential oil from the Tunisian Ononis angustissima L. (Fabaceae). J Oleo Sci. 2016;65:339–45.CrossrefPubMedGoogle Scholar

  • [78]

    Dhaouadi K, Raboudi F, Funez-Gomez L, Pamies D, Estevan C, Hamdaoui M. Polyphenolic extract of barbary-fig (Opuntia ficus-indica) syrup: RP-HPLC-ESI-MS analysis and determination of antioxidant, antimicrobial and cancer-cells cytotoxic potentials. Food Anal Methods. 2013;6:45–53 590‐596.CrossrefGoogle Scholar

  • [79]

    Hajlaoui H, Mighri H, Aouni M, Gharsallah N, Kadri A. Chemical composition and in vitro evaluation of antioxidant, antimicrobial, cytotoxicity and anti-acetylcholinesterase properties of Tunisian Origanum majorana L. essential oil. Mic Path. 2016;95:86–94.CrossrefGoogle Scholar

  • [80]

    Ben Mansour R, Gargouri B, Bouaziz M, Elloumi N, Belhadj Jilani I, Gharbi Z, Antioxidant activity of ethanolic extract of inflorescence of Ormenis africana in vitro and in cell cultures. Lipids Health Dis. 2011;10:78–7.PubMedCrossrefGoogle Scholar

  • [81]

    Chabir N, Ibrahim H, Romdhane H, Valentin A, Moukarzel B, Mars M, Seeds of Peganum Harmala L. Chemical analysis, antimalarial and antioxidant activities, and cytotoxicity against human breast cancer cells. Med Chem. 2014;11:94–101.CrossrefPubMedGoogle Scholar

  • [82]

    Chen Q, Chao R, Chen H, Hou X, Yan H, Zhou S, Antitumor and neurotoxic effects of novel harmine derivatives and structure-activity relationship analysis. Int J Cancer. 2005;114:675–82.PubMedCrossrefGoogle Scholar

  • [83]

    Chakroun M, Khemakhem B, Ben Mabrouk H, El Abed H, Makni M, Bouaziz M, Evaluation of anti-diabetic and anti-tumoral activities of bioactive compounds from Phoenix dactylifera L’s leaf: In vitro and in vivo approach. Biomed Pharmacother. 2016;84:415–22.PubMedCrossrefGoogle Scholar

  • [84]

    Mezni F, Shili S, Ben Ali N, Khouja ML, Khaldi A, Maaroufi A. Evaluation of Pistacia lentiscus seed oil and phenolic compounds for in vitro antiproliferative effects against BHK21 cells. Pharmaceut Bio Early Online. 2015;1:1–5.Google Scholar

  • [85]

    Krifa M, El Mekdad H, Bentouati N, Pizzi A, Ghedira K, Hammami M, Immunomodulatory and anticancer effects of Pituranthos tortuosus essential oil. Tumor Biol. 2015;36:5165–70 10.5650/jos.ess15242.CrossrefGoogle Scholar

  • [86]

    Greasy SJ, Ireland DJ, Kissick HT, Levy A, Beilharz MW, Riley TV, Induction of necrosis and cell cycle arrest in murine cancer cell lines by Melaleuca alternifolia (tea tree) oil and terpinen-4-ol. Cancer Chemother Pharmacol. 2009;65:877–88.PubMedGoogle Scholar

  • [87]

    Bekir J, Mars M, Souchard JP, Bouajila J. Assessment of antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of pomegranate (Punica granatum) leaves. Food Chem Toxicol. 2013;55:470–5.CrossrefPubMedGoogle Scholar

  • [88]

    Nawwar MA, Hussein SA, Merfort I. NMR spectral analysis of polyphenols from Punica granatum. Phytochem. 1994;36:793–8.CrossrefGoogle Scholar

  • [89]

    Ben Salah Abbès J, Abbès S, Abdel Wahhab MA, Oueslati R. In-vitro free radical scavenging, antiproliferative and anti-zearalenone cytotoxic effects of 4-(methylthio)-3-butenyl isothiocyanate from Tunisian Raphanus sativus. J Pharm Pharmacol 2010; 62: 231-239. 2010;62:231–39.Google Scholar

  • [90]

    Karker M, Falleh H, Msaada K, Smaoui A, Abdelly C, Legault J, Antioxidant, anti-inflammation and anticancer activities of the medicinal halophyte Reaumuria vermiculata. EXCLI J. 2016;15:297–307.Google Scholar

  • [91]

    Nawwar MA, Ayoub NA, El-Rai MA, Bassyouny F, Eman M, Al-Abd AM, Cytotoxic ellagitannins from Reaumuria vermiculata. Fitoter. 2012;83:1256–66.CrossrefGoogle Scholar

  • [92]

    Edziri H, Mastouri M, Mahjoub MA, Mighri Z, Mahjoub A, Verschaeve L. Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules. 2012;17:7284–93.CrossrefPubMedGoogle Scholar

  • [93]

    Ben Ammar R, Kilani S, Bouhlel I, Ezzi L, Skandrani I, Boubaker J, Antiproliferative, antioxidant, and antimutagenic activities of flavonoid-enriched extracts from (Tunisian) Rhamnus alaternus L.: Combination with the phytochemical composition. Dro Chem Toxicol. 2008;31:61–80.CrossrefGoogle Scholar

  • [94]

    Zarai Z, Ben Chobba I, Ben Mansour R, Békir A, Gharsallah N, Kadri A. Essential oil of the leaves of Ricinus communis L.: In vitro cytotoxicity and antimicrobial properties. Lipids Health Dis. 2012;11:102–07.CrossrefPubMedGoogle Scholar

  • [95]

    Ben Chobba I, Bekir A, Ben Mansour R, Drira N, Gharsallah N, Kadri A. In vitro Evaluation of antimicrobial and cytotoxic activities of Rosmarinus officinalis L. (Lamiaceae) essential oil cultivated from south-west Tunisia. J Ap Pharm. 2012;2:034–039.Google Scholar

  • [96]

    Bendaoud H, Romdhane M, Souchard JP, Cazaux S, Bouajila J. Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. J Food Sci. 2010;75:C466–72.CrossrefGoogle Scholar

  • [97]

    Ben Rahal N, Barba FJ, Barth D. Supercritical CO2 extraction of oil, fatty acids and flavonolignans from milk thistle seeds: Evaluation of their antioxidant and cytotoxic activities in Caco-2 cells. Food Chem Toxicol. 2015;83:275–82.CrossrefPubMedGoogle Scholar

  • [98]

    Oueslati S, Ksouri R, Falleh H, Pichette A, Abdelly C, Legault J. Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem. 2012;132:943–47.CrossrefGoogle Scholar

  • [99]

    Hammami S, Jmii H, El Mokni R, Khmiri A, Faidi K, Dhaouadi H, Essential oil composition, antioxidant, cytotoxic and antiviral activities of Teucrium pseudochamaepitys growing spontaneously in Tunisia. Molecules. 2015;20:20426–33.CrossrefPubMedGoogle Scholar

  • [100]

    Ben Sghaier M, Ben Ismail M, Bouhlel I, Ghedira K, Chekir-Ghedira L. Leaf extracts from Teucrium ramosissimum protect against DNA damage in human lymphoblast cell K562 and enhance antioxidant, antigenotoxic and antiproliferative activity. Environ Toxicol Pharm . 2016;44:44–52.CrossrefGoogle Scholar

  • [101]

    Azadi HG, Ghaffari SM, Riazi GH, Ahmadian S, Vahedi F. Antiproliferative activity of chloroformic extract of Persian shallot, Allium hirtifolium, on tumor cell lines. Cytotech. 2008;56:179–85.CrossrefGoogle Scholar

  • [102]

    Bouabdallah S, Sghaier RM, Selmi S, Khlifi D, Laouini D, Ben Attiaa M. Current approaches and challenges for chemical characterization of inhibitory effect against cancer cell line isolated from Gokshur extract. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1026:279–85.PubMedGoogle Scholar

  • [103]

    Megdiche-Ksouri W, Medini F, Mkadmini K, Legault J, Magné C, Abdelly C, LC-ESI-TOF-MS identification of bioactive secondary metabolites involved in the antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Zygophyllum album Desf. Food Chem. 2013;139:1073–80.PubMedCrossrefGoogle Scholar

  • [104]

    Znati M, Ben Jannet H, Cazaux S, Souchard JP, Harzallah Skhiri F, Bouajila J. Antioxidant, 5-lipoxygenase inhibitory and cytotoxic activities of compounds isolated from the Ferula lutea flowers. Molecules. 2014b;19:16959–75.CrossrefGoogle Scholar

  • [105]

    Boubaker J, Bhouri W, Sghaier MB, Bouhlel I, Skandrani I, Ghedira K, Leaf extracts from Nitraria retusa promote cell population growth of human cancer cells by inducing apoptosis. Cancer Cell Int. 2011;11:37–11.CrossrefPubMedGoogle Scholar

  • [106]

    Ben Hsouna A, Trigui M, Ben Mansour R, Mezghani Jarraya R, Damak M, Jaoua S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in mincedbeef meat. Int J Food Microbio. 2011;148:66–72.CrossrefGoogle Scholar

  • [107]

    Yan MM, Li TY, Zhao DQ, Shao S, Bi SN. A new derivative of triterpene with anti-melanoma B16 activity from Conyza canadensis. Chinese Chem Lett. 2010;21:834–37.CrossrefGoogle Scholar

  • [108]

    Kacem M, Kacem I, Simon G, Ben Mansour A, Chaabouni S, Elefki A, Phytochemicals and biological activities of Ruta chalepensis L. growing in Tunisia. Food Biosci. 2015;12:73–83.CrossrefGoogle Scholar

  • [109]

    Bouhlel I, Limem I, Skandrani I, Nefatti A, Ghedira K, Dijoux-Franca MG, Leila CG. Assessment of isorhamnetin 3-O-neohesperidoside from Acacia salicina: protective effects toward oxidation damage and genotoxicity induced by aflatoxin B1 and nifuroxazide. J Appl Toxicol. 2010;30:551–58.CrossrefPubMedGoogle Scholar

  • [110]

    Alam P, Alajmi MF, Arbab AH, Parvez MK, Siddiqui NA, Alqasoumi SI, omparative study of antioxidant activity and validated RP-HPTLC analysis of rutin in the leaves of different Acacia species grown in Saudi. Arabia Saudi Pharm J. 2016; http://dx.doi.org/10.1016/j.jsps.2016.10.010.

  • [111]

    Lin JP, Yang JS, Lin JJ, Lai KC, Lu HF, Ma CY, utin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Environ. Toxicol. 2012;27:480–84.CrossrefGoogle Scholar

  • [112]

    Araújo JR, Gonçalves P, Martel F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res. 2011;31:77–87.CrossrefPubMedGoogle Scholar

  • [113]

    Park Kw, Kim SY, Jeong IY, Byun MW, Park KH, Yamada K. Cytotoxic and antitumor activities of thiosulfinates from Allium tuberosum L. J Agric Food Chem. 2007;55:7957–61.PubMedCrossrefGoogle Scholar

  • [114]

    Crowell PL. Prevention and therapy of cancer by dietary monoterpenes. J Nutr. 1999;129:775–78.Google Scholar

  • [115]

    Ferguson P, Kurowska E, Freeman D, Chambers A, Koropatrick D. A flavonoid fraction from cranberry extract inhibits proliferation of human tumor cell line. J Nutr. 2004;134:1529–1535.PubMedCrossrefGoogle Scholar

  • [116]

    Olsson ME, Gustavsson KE, Andersson S, Nilsson A, Duan RD. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J Agric Food Chem. 2004;52:7264–71.CrossrefPubMedGoogle Scholar

  • [117]

    Saunders C. The anti-proliferative effect of different tomato varieties on the human colon adenocarcinoma cells. Biosci Horizons. 2009;2:172–79.CrossrefGoogle Scholar

  • [118]

    Younsi F, Trimech R, Boulila A, Ezzine O, Dhahri S, Boussaid M, Essential oil and phenolic compounds of Artemisia herba-alba (Asso.): composition, antioxidant, antiacetylcholinesterase and antibacterial activities. Int J Food Prop. 2016;19:1425–38.CrossrefGoogle Scholar

  • [119]

    Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer. 2000;87:595–600.PubMedCrossrefGoogle Scholar

  • [120]

    Belkaid A, Currie JC, Desgagnés J, Annabi B. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression. Cancer Cell Inter. 2006;6:1–12.CrossrefGoogle Scholar

  • [121]

    Rios JL, Waterman PG. review of the pharmacology and toxicology of Astragalus. Phytother Res . 1997;11:411–18.CrossrefGoogle Scholar

  • [122]

    Sun JY, Zhu MZ, Wang SW, Miao S, Xie YH, Wang JB. nhibition of the growth of human gastric carcinoma in vivo and in vitro by swainsonine. Phytomed. 2007;14:353–59.CrossrefGoogle Scholar

  • [123]

    Yu JL, Mo K, Wang Z, Xiang Z. Study on inhibitory effect by total alkaloids in Capparis spinosa on SGC- 7901 in vitro. J Shenyang Pharm Univ. 2008;25:74–75.Google Scholar

  • [124]

    Lam SK, Han QF, Ng TB. Isolation and characterization of a lectin with potentially exploitable activities from caper (Capparis spinosa) seeds. J Art. 2009;29:293–99.Google Scholar

  • [125]

    Dhaouadi K, Belkhir M, Akinocho I, Rabodi F, Pamiers D, Barrajón E. Sucrose supplementation during traditional carob syrup processing affected its chemical characteristics and biological activities. LWT - Food Sci Technol . 2014;57:1–8.CrossrefGoogle Scholar

  • [126]

    Kim MG, Lee SE, Yang JY, Lee HS. Antimicrobial potentials of active component isolated from Citrullus colocynthis fruits and structure-activity relationships of its analogues against food borne bacteria. J Sci Food Agric. 2014;94:2529–33.CrossrefPubMedGoogle Scholar

  • [127]

    Song F, Dai B, Zhang HY, Xie JW, Gu CZ, Zhang J. Two new cucurbitane-type triterpenoid saponins isolated from ethyl acetate extract of Citrullus colocynthis fruit. J Asian Nat Prod Res. 2015;17:813–818.PubMedCrossrefGoogle Scholar

  • [128]

    Setzer WN, Schmidt JM, Noletto JA, Vogler B. Leaf oil compositions and bioactivities of abaco bush medicines. Pharmacol Online. 2006;3:794–02.Google Scholar

  • [129]

    Edziri H, Mastouri M, Ammar S, Mahjoub MA, Brahim S, Kenani A, Antibacterial, antioxidant and cytotoxic activities of extracts of Conyza canadensis (L.) Cronquist growing in Tunisia,. Med Chem Res. 2009;18:447–454.CrossrefGoogle Scholar

  • [130]

    Li W, Liu M, Xu YF, Feng Y, Che JP, Wang GC, Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a. Oncol Rep. 2014;31:117–24.CrossrefPubMedGoogle Scholar

  • [131]

    Papi A, Farabegoli F, Iori R, Orlandi M, De Nicola GR, Bagatta M, Vitexin-2-O-xyloside, raphasatin and (−)-epigallocatechin-3-gallate synergistically affect cell growth and apoptosis of colon cancer cells. Food Chem. 2013;138:1521–30.CrossrefPubMedGoogle Scholar

  • [132]

    Lee CY, Chien YS, Chiu TH, Huang WW, Lu CC, Chiang JH, Apoptosis triggered by vitexin in U937 human leukemia cells via a mitochondrial signaling pathway. Oncol rep. 2012;28:1883–88.CrossrefGoogle Scholar

  • [133]

    Avelar MM, Gouvêa CMCP. Procyanidin B2 Cytotoxicity to MCF-7 Human Breast Adenocarcinoma Cells. Indian J Pharm Sci. 2012;74:351–55 1553‐1558.PubMedCrossrefGoogle Scholar

  • [134]

    Kin R, Kato S, Kaneto N, Sakurai H, Hayakawa Y, Li F, Procyanidin C1 from Cinnamomi Cortex inhibits TGF-β-induced epithelial-to-mesenchymal transition in the A549 lung cancer cell line. J Oncology . 2013;43:1901–06 544‐548.Google Scholar

  • [135]

    Araújo Lk, Rocha GG, Monção-Ribeiro LC, Fernandes J, Takiya CM, Gattass CR. Oleanolic acid initiates apoptosis in non-small cell lung cancer cell lines and reduces metastasis of a B16F10 melanoma model in vivo. PLOS One. 2011;6:e28596–10.PubMedCrossrefGoogle Scholar

  • [136]

    Kanjoormana M, Kuttan G. Kanjoormana M, Kuttan G, Antiangiogenic activity of ursolic acid. Integr Cancer ther. 2010;9:224–35.PubMedCrossrefGoogle Scholar

  • [137]

    Martínez Conesa C, Yanez Gascon MJ, Alcaraz Baños M, Canteras Jordana M, Benavente-García O, Castillo J. Treatment of metastatic melanoma B16F10 by the flavonoids tangeretin, rutin, and diosmin. J Agric Food Chem . J Agric Food Chem. 2005;53:6791–97.PubMedCrossrefGoogle Scholar

  • [138]

    Sudan S, Rupasinghe HPV. Antiproliferative activity of long chain acylated esters of quercetin-3-O-glucoside in hepatocellular carcinoma HepG2 cells. Exp Biol Med. 2015;240:1452–64.CrossrefGoogle Scholar

  • [139]

    Lee J, Kim JH. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLOS One. 2016;61:1–14.Google Scholar

  • [140]

    Manikandan R, Beulaja M, Arulvasu C, Sellamuthu S, Dinesh D, Prebhu D. Synergistic anticancer activity of Curcumin and Catechin: an in vitro study using human cancer cell lines. Micro Res Tech. 2012;75:112–16 215S-217S.CrossrefGoogle Scholar

  • [141]

    Deina M, Rosa A, Cottiglia F, Bonsignore L, Dessi MA. Chemical composition and antioxidant activity of extracts from Daphne gnidium L. J Am Oil Chem Soci. 2003;80:65–70.CrossrefGoogle Scholar

  • [142]

    Finn GJ, Creaven BS, Egan DA. Daphnetin induced differentiation of human renal carcinoma cells and its mediation by p38 mitogen-activated protein kinase. Biochem Pharmacol. 2004;67:1779–88.PubMedCrossrefGoogle Scholar

  • [143]

    Jiménez-Orozco FA, Román Rosales AA, Vega-López A, Domínguez-López ML, García-Mondragón MJ, Maldonado-Espinoza A, Differential effects of esculetin and daphnetin on in vitro cell proliferation and in vivo estrogenicity. Euro J Pharmacol. 2011;668:35–41.CrossrefGoogle Scholar

  • [144]

    Li ZD, Hu XW, Wang YT, Fang J. Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id. FEBS Letters. 2009;583:1999–2003.CrossrefGoogle Scholar

  • [145]

    An F, Wang S, Tiam Q, Zhu D. Effects of orientin and vitexin from Trollius chinensis on the growth and apoptosis of esophageal cancer EC-109 cells. Onco Letters. 2015;10:2627–33.CrossrefGoogle Scholar

  • [146]

    Wang X, Song ZJ, He X, Zhang RQ, Zhang CF, Li F, Antitumor and immunomodulatory activity of genkwanin on colorectal cancer in the APC(Min/+) mice. Int Pharmacol. 2015; 29:701-707.Google Scholar

  • [147]

    Khlat M. Cancer in mediterranean migrants-based on studies in France and Australia. Cancer Causes Control. 1995;6:525–31.CrossrefPubMedGoogle Scholar

  • [148]

    Eichholzer M, Stäahelin HB, Gey KF, Lüdin E, Bernasconi F. Prediction of male cancer mortality by plasma levels of interacting vitamins: 17-year follow-up of the prospective Basel study. Int J Cancer. 1996;66:145–44.CrossrefPubMedGoogle Scholar

  • [149]

    Ip C, Jiang C, Thompson HJ, Scimeca JA. Retention of conjugated linoleic acid in the mammary gland is associated with tumor inhibition during the post-initiation phase of carcinogenesis. Carcinogenesis. 1997;18:755–59.CrossrefPubMedGoogle Scholar

  • [150]

    Visonneau S, Cesano A, Tepper SA, Scimeca JA, Santoli D, Kritchevsky D, Conjugated linoleic acid suppresses the growth of human breast adenocarcinoma cells in SCID mice. Anticancer Res 1997; 17: 969-973. Anticancer Res. 1997;17:969–73.Google Scholar

  • [151]

    Grossmann ME, Mizuno NK, Schuster T, Cleary MP. Punicic acid is an x-5 fatty acid capable of inhibiting breast cancer proliferation. Int J Oncol. 2010;36:421–6.Google Scholar

  • [152]

    Menendez JA, Vellon L, Colomer R, Lupu R. Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erb B-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (Herceptine) in breast cancer cells with Her-2/neu oncogene amplification. An Oncol. 2005;16:359–71.CrossrefGoogle Scholar

  • [153]

    Baskar AA, Ignacimuthu S, Paulraj GM, Al Numair KS. Chempreventive potential of b-sitosterol in experimental colon cancer model an in vitro and in vivo study. BMC.Complement Altern Med. 2010;10:1–10.Google Scholar

  • [154]

    Jiang Q, Wong J, Fyrst H, Saba JD, Ames BN. Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis. Proc Nat Acad Sci. 2004;51:7825–30.Google Scholar

  • [155]

    Verhoeven DTH, Assen N, Goldbohm RA, Dorant E, Van’t Veer P, Sturmans F, Vitamins C and E, retinol, beta-carotene and dietary fibre in relation to breast cancer risk: a prospective cohort study. Br J Cancer. 1997;75:149–55.CrossrefGoogle Scholar

  • [156]

    Yoo CB, Han KT, Cho KS, Ha J, Park HJ, Nam JH, Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Letters. 2005;225:41–52.CrossrefPubMedGoogle Scholar

  • [157]

    El Manawary M, Fayad W, El-Fiky NM, Wassel GM, El Menshawi BS. High-throughput screening of 75 Euphorbiaceae and Myrtaceae plant extracts for in-vitro antitumor and pro-apoptotic activities on human tumor cell lines, and lethality to brine shrimp. Int J Pharm Pharmaceut Sci . 2013;5:178–83.Google Scholar

  • [158]

    Britto A, De Oliveira ACA, Henriques RM, Cardoso GMB, Bomfim DS, Carvalho AA, In vitro and in vivo antitumor effects of the essential oil from the leaves of Guatteria Friesiana. Planta Med. 2012;78:409–12.CrossrefPubMedGoogle Scholar

  • [159]

    Es-Safi NE, Khlifi S, Kollmann A, Kerhoas L, El Abbouyi A, Ducrot PH. Iridoid glucosides from the aerial parts of Globularia alypum L. (Globulariaceae). Chem Pharm Bull. 2006;54:85–8.CrossrefPubMedGoogle Scholar

  • [160]

    Aiyelaagbe OO, Hamid AA, Fattorusso E, Taglialatela-Scafati O, Schröder HC, Müller WEG. Cytotoxic activity of crude extracts as well as of pure components from Jatropha Species, Plants used extensively in African traditional medicine. Evid Based Compl Alternat Med. 2011;1:1–7.Google Scholar

  • [161]

    Kim JK, Kim JY, Kim HJ, Park KG, Harris RA, Cho WJ, Scoparone exerts anti-tumor activity against DU145 prostate cancer cells via inhibition of STAT3 activity. PLOS One. 2013;8:1–13.Google Scholar

  • [162]

    Jin HR, Zhao J, Zhang Z, Liao Y, Wang CZ, Huang WH, The antitumor natural compound falcarindiol promotes cancer cell death by inducing endoplasmic reticulum stress. Cell Death Dis. 2012;3:1–9 .Google Scholar

  • [163]

    Thomas S. Pharmacognostic and phytochemical constituents of leaves of Jatropha multifida Linn. and Jatropha podagrica Hook. J Pharmaco Phytochem. 2016;5:243–4.Google Scholar

  • [164]

    Krifa M, Bouhlel I, Ghedira-Chekir L, Ghedira K. Immunomodulatory and cellular anti-oxidant activities of an aqueous extract of Limoniastrum guyonianum gall. J Ethnopharmacol. 2013b;146:243–9.CrossrefGoogle Scholar

  • [165]

    Bors W, Michel C, Stettmaier K. Structure–activity relationships governing antioxidant capacities of plant polyphenols. Methods Enzymol. 2001;335:166–80.PubMedCrossrefGoogle Scholar

  • [166]

    Liu JD, Chen SH, Lin CL, Tsai SH, Liang YC. Inhibition of melanoma growth and metastasis by combination with (-)-epigallocatechin-3-gallate and dacarbazine in mice. J Cell Biochem. 2001;83:631–42.CrossrefPubMedGoogle Scholar

  • [167]

    Watanabe T, Kuramochi H, Takahashi A, Imai K, Katsuta N, Nakayama T, Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gall atetreated cells. J Cancer Res Clin. 2012;138:859–66.CrossrefGoogle Scholar

  • [168]

    Lemarie F, Chang CW, Blatchford DR, Amor R, Norris G, Tetley L, Antitumor activity of the tea polyphenol epigallocatechin-3-gallate encapsulated in targeted vesicles after intravenous administration. Nanomed. 2013;8:181–192.CrossrefGoogle Scholar

  • [169]

    Krifa M, Alhosin M, Muler CD, Gies JP, Chekir-Ghedira L, Ghedira K, Limoniastrum guyonianum aqueous gall extract induces apoptosis in human cervical cancer cells involving p16INK4A reexpression related to UHRF1 and DNMT1 down-regulation. J Exp Clin Cancer Res. 2013a;32:30–10 [43] 47–54.CrossrefGoogle Scholar

  • [170]

    Maurya DK, Nandakumar N, Devasagayam TPA. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J Clin Biochem Nutr. 2011;48:85–90.PubMedGoogle Scholar

  • [171]

    Devi YP, Uma A, Narasu ML, Kalyani C. Anticancer activity of gallic acid on cancer cell lines HCT15 and MDA MB 231. Int J Res Ap. 2014;2:269–72.Google Scholar

  • [172]

    Balaji C, Muthukumaran J, Vinothkumar R, Nalini N. Anticancer effects of sinapic acid on human colon cancer cell lines HT-29 and SW480. Int J Pharm Bio Archives. 2014;5:176–83.Google Scholar

  • [173]

    McCann MJ, Gill CIR, Brien GO, Rao JR, McRoberts WC, Hughes P, Anti-cancer properties of phenolics from aplle waste on colon carciongenesis in vitro. Food Chem Toxicol. 2007;45:1224–1230.CrossrefGoogle Scholar

  • [174]

    Edderkaoui M, Lugea A, Hui H, Eibl G, Lu QY, Moro A. Ellagic acid and embelin affect key cellular components of pancreatic adenocarcinoma, cancer and stellate cells. Nutr Cancer. 2013;65:1232–44.CrossrefPubMedGoogle Scholar

  • [175]

    Sun F, Zheng XY, Ye J, Wu TT, Wang JL, Chem W. Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer. 2012;64:599–606.CrossrefPubMedGoogle Scholar

  • [176]

    Li C, Yang D, Zhao Y, Qiu Y, Cao X, Yu Y, Inhibitory effects of isorhamnetin on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-2/9. Nutr Cancer. 2015;67:1191–200.CrossrefPubMedGoogle Scholar

  • [177]

    Sylvestre M, Legault J, Dufour D, Pichette A. Chemical composition and anticancer activity of leaf essential oil of Myrica gale L. Phytomed. 2005;12:299–304.CrossrefGoogle Scholar

  • [178]

    Burke YD, Stark MJ, Roach SL, Sen SE, Crowell PL. Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids. 1997;32:151–56.CrossrefPubMedGoogle Scholar

  • [179]

    Kadri A, Zarai Z, Bekir A, Gharsallah N, Damak M, Gdoura R. Chemical composition and antioxidant activity of Marrubium vulgare L. essential oil from Tunisia. Afr J biotech. 2011;10:3908–14.Google Scholar

  • [180]

    Zhuang SR, Chen SL, Tsai JH, Huang CC, Wu TC, Liu WS, Effect of citronellol and the Chinese medical herb complex on cellular immunity of cancer patients receiving chemotherapy/radiotherapy. Phytother Res. 2009;23:785–90.CrossrefGoogle Scholar

  • [181]

    Hayes AJ, Leach DN, Markham JL, Markovic B. In vitro cytotoxicity of Australian tea tree oil using human cell lines. J Essent Oil Res. 1997;9:575–82.CrossrefGoogle Scholar

  • [182]

    Wang W, Li N, Luo M, Zu Y, Efferth T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules. 2012;17:2704–13.PubMedCrossrefGoogle Scholar

  • [183]

    Murata S, Shiragami R, Kosugi C, Tezuka T, Yamazaki M, Hirano A, Antitumor effect of 1, 8-cineole against colon cancer. Oncol Rep. 2013;30:2647–52.PubMedCrossrefGoogle Scholar

  • [184]

    Girola N, Figueiredo CR, Farias CF, Azevedo RA, Ferreira AK, Teixeira SF, Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo. Biochem Biophys Res Com. 2015;467:928–34.CrossrefGoogle Scholar

  • [185]

    Cole RA, Bansal A, Moriarity DM, Daber WA, Setzer WN, Chemical composition and cytotoxic activity of the leaf essential oil of Eugenia zuchowskiae from Monteverde, Costa Rica. J Nat Med. 2007;61:414–17.CrossrefGoogle Scholar

  • [186]

    Fraternale D, Ricci D, Calcabrini C, Guescini M, Martinelli C, Sestili P. Cytotoxic activity of essential oils of aerial parts and ripe fruits of Echinophora spinosa (Apiaceae). Nat Prod Communicat. 2013;8:1645–49.Google Scholar

  • [187]

    Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr. 2005;81:215S–7.PubMedCrossrefGoogle Scholar

  • [188]

    Mohamed AA, Ali SI, Darwesh OM, El-Hallouty SM, Sameeh M. Chemical compositions, potential cytotoxic and antimicrobial activities of Nitraria retusa methanolic extract sub-fractions. Int J Toxicol Pharmacol Res. 2015;7:204–12.Google Scholar

  • [189]

    Williams GM, Iatropoulos MJ. Inhibition of the hepatocarcinogenicity of aflatoxin B1 in rats by low levels of the phenolic antioxidants butylated hydroxyanisole and butylated hydroxytoluene. Cancer Let. 1996;104:49–53.CrossrefGoogle Scholar

  • [190]

    Su Z, Huang H, Li J, Zhu Y, Huang R, Qiu SX. Chemical composition and cytotoxic activities of petroleum ether fruit extract of fruits of Brucea javanica (Simarubaceae). Trop J Pharm Res. 2013;12:735–42.Google Scholar

  • [191]

    Luo H, Cai Y, Peng Z, Liu T, Yang S. Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (dragon fruit) peel. Chem Central J. 2014;8:1–7.CrossrefGoogle Scholar

  • [192]

    Tsuneki H, Ma EL, Kobayashi S, Sekizaki N, Maekawa K, Sasaoka T, Antiangiogenic activity of beta-eudesmol in vitro and in vivo. Eur J Pharmacol. 2005;512:105–15.CrossrefPubMedGoogle Scholar

  • [193]

    Ma EL, Li YC, Tsuneki H, Xiao JF, Xia MY, Wang MW, β-Eudesmol suppresses tumour growth through inhibition of tumour neovascularisation and tumour cell proliferation. J Asian Nat Prod. 2008;10:159–67.CrossrefGoogle Scholar

  • [194]

    Li Y, Li T, Miao C, Li J, Xiao W, Ma E. Eudesmol induces JNK-Dependent apoptosis through the mitochondrial pathway in HL60 Cells. Phytother Res. 2013;27:338–43.CrossrefPubMedGoogle Scholar

  • [195]

    Da Silva SL, Figueiredo PM, Yano T. Cytotoxic evaluation of essential oil from Zanthoxylum rhoifolium Lam. Leaves. Acta Amaz . 2007;37:281–6 .CrossrefGoogle Scholar

  • [196]

    Antunes-Ricardo M, Moreno-García BE, Gutiérrez-Uribe JA, Aráiz-Hernández D, Alvarez MM, Serna-Saldivar SO. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads. Plant Foods Hum Nutr. 2014;69:331–6.CrossrefPubMedGoogle Scholar

  • [197]

    Kim JE, Lee DE, Lee KW, Son JE, Seo SK, Li J, Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3-K. Cancer Prev Res. 2011;4:582–91.CrossrefGoogle Scholar

  • [198]

    Legault J, Pichette A. Potentiating effect of beta-caryophyllene on anticancer activity of alpha-humulene., isocaryophyllene and paclitaxel. J Pharm Pharmacol. 20017;59:1643–47.Google Scholar

  • [199]

    Cole SW, Hawkley LC, Arevalo JM, Sung CY, Rose RM, Cacioppo JT. Social regulation of gene expression in human leukocytes. Genome Biol. 2007;8:R189.181–R189.113.Google Scholar

  • [200]

    Moloudizargari M, Mikaili P, Aghajanshakeri S, Asghari MH, Shayegh J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn Rev. 2013;7:199–222.CrossrefPubMedGoogle Scholar

  • [201]

    Nafisi S, Bonsaii M, Maali P, Khalilzadeh MA. Beta-carboline alkaloids bind DNA. J. Photochem. Photobiol B. 2010;100:84–91.CrossrefPubMedGoogle Scholar

  • [202]

    Li Y, Liang F, Jiang W, Yu F, Cao R, Ma Q, DH334, a beta-carboline anti-cancer drug, inhibits the CDK activity of budding yeast. Cancer Biol Ther. 2007;6:1193–9.PubMedGoogle Scholar

  • [203]

    Cao R, Peng W, Chen H, Ma Y, Liu X, Hou X, DNA binding properties of 9-substituted harmine derivatives. Biochem Biophys Res Commun. 2005;338:1557–63.CrossrefPubMedGoogle Scholar

  • [204]

    El Gendy MA, Soshilov AA, Denison MS, El-Kadi AO, Harmaline and harmalol inhibit the carcinogen-activating enzyme CYP1A1 via transcriptional and posttranslational mechanisms. Food Chem Toxicol. 2012;50:353–62.CrossrefPubMedGoogle Scholar

  • [205]

    Jahaniani F, Ebrahimi SA, Rahbar-Roshandel N, Mahmoudian M. Xanthomicrol is the main cytotoxic component of Dracocephalum kotschyii and a potential anti-cancer agent. Phytochem. 2005;66:1581–92.CrossrefGoogle Scholar

  • [206]

    Kumar S, Suresh PK, Vijayababu MR, Arunkumar A, Arunakaran J. Anticancer effects of ethanolic neem leaf extract on prostate cancer cell line (PC-3). J Ethnopharmacol. 2006;105:246–50.CrossrefPubMedGoogle Scholar

  • [207]

    Wang C, Mathiyalagan R, Kim YJ, Castro-Aceituno V, Singh P, Ahn S, Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int J Nanomed. 2016;11:3691–701.CrossrefGoogle Scholar

  • [208]

    Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep . 2016;6:240–49.Google Scholar

  • [209]

    Thanekar D, Dhodi J, Gawali N, Raju A, Deshpande P, Degani M, Evaluation of antitumor and anti-angiogenic activity of bioactive compounds from Cinnamomum tamala: In vitro, in vivo and in silico approach. S Afr J Bot. 2016;104:6–14.CrossrefGoogle Scholar

  • [210]

    Mezni F, Maaroufi A, Msallem M, Boussaid M, Khouja ML, Khaldi A, Fatty acid composition, antioxidant and antibacterial activities of Pistacia lentiscus L. fruit oils. J Med Plants Res. 2012;6:5266–271.CrossrefGoogle Scholar

  • [211]

    Lior X, Pons E, Roca A, Alvarez M, Mañé J, Fernández-Bañares F, The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes. Clin Nutr. 2003;22:71–9.CrossrefPubMedGoogle Scholar

  • [212]

    Pierre AS, Minville-Walz M, Fèvre C, Hichami A, Gresti J, Pichon L. Tran-10 Cis-12 congugated linoleic acid induced cell death in human colon cancer cells through reactive oxygen species-mediated ER stress. Biochem Biophys Acta. 2013;1831:759–68.Google Scholar

  • [213]

    Dhifi W, Jelali N, Chaabani E, Beji M, Fatnassi S, Omri S, Chemical composition of Lentisk (Pistacia lentiscus L.) seed oil. AJAR. 2013;8:1395–400.Google Scholar

  • [214]

    McIntyre BS, Briski KP, Gapor A, Sylvester PW. Antiproliferative and apoptic effects of tocopherols and tocotrienols on preneoplastic and neoplastic mouse mammary epithelial cells. Proc Soc Exp Biol Med. 2000;224:292–301.CrossrefGoogle Scholar

  • [215]

    Chatelain E, Boscoboinik DO, Bartoli GM, Kagane VE, Gey FK, Packer L. Inhibition of smooth muscule cell proliferation and protein kinase C activation by tocopherols and tocotrienols. Biochem Biophys Acta. 1993;1176:83–9.CrossrefGoogle Scholar

  • [216]

    Cho Sc, Lee MJ, Xu HD, Han SS, Lee YL, Lee SW, Antiproliferative effects of phenolic compounds isolated from Brazilian Propolis. In: Rossi M, Besrtone S, eds. Drug Development: Principles, Methodology and Emerging Challenges (Pharmacology-Research, Safety Testing and Regulation). Korea: Nova Sci. Publishers. 2013;:89–98.Google Scholar

  • [217]

    Lu XJ, Zhan LB, Feng BA, Qu MY, Xu LH, Xie JH, Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene. World J Gastroenterol. 2004;10:2140–44.CrossrefPubMedGoogle Scholar

  • [218]

    Chen W, Liu Y, Li M, Mao J, Zhang L, Huang R, Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J Pharmaco Sci. 2015;127:332–8.CrossrefGoogle Scholar

  • [219]

    Jurenka J. Therapeutic applications of pomegranate (Punica granatum L.): A review. Alt Med Rev. 2008;13:128–44.Google Scholar

  • [220]

    Seeram NP, Aronson WJ, Zhang Y, Henning SM, Moro A, Lee RP, Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J Agric Food Chem. 2007;55:7732–37.CrossrefPubMedGoogle Scholar

  • [221]

    Ben Ammar R, Kilani S, Bouhlel I, Skandrani I, Naffeti A, Boubaker J, Antibacterial and cytotoxic activities of extracts from (Tunisian) Rhamnus alaternus (Rhamnaceae). An Microbio. 2007;57:453–60.CrossrefGoogle Scholar

  • [222]

    Boussahel S, Speciale A, Dahmana S, Amar Y, Bonaccorsi I, Cacciola F, Flavonoid profile, antioxidant and cytotoxic activity of different extracts from Algerian Rhamnus alaternus L. bark. Pharmacog Mag. 2015;11:102–09.CrossrefGoogle Scholar

  • [223]

    Bhouri W, Boubaker J, Kilani S, Ghedira LC. Flavonoids from Rhamnus alaternus L.(Rhamnaceae): Kaempferol 3-O-β-isorhamninoside and rhamnocitrin 3-O-β-isorhamninoside protect against DNA damage in human lymphoblastoid cell and enhance antioxidant activity. S Afr Bot. 2012;80:57–62.CrossrefGoogle Scholar

  • [224]

    Lee WS, Yi SM, Yun JW, Jung JH, Kim DH, Kim HJ, Polyphenols isolated from Allium cepa L. induces apoptosis by induction of p53 and suppression of Bcl-2 through inhibiting PI3K/Akt signaling pathway in AGS human cancer cells. J Cancer Prev. 2014;19:14–22.CrossrefPubMedGoogle Scholar

  • [225]

    Shunying Z, Yang Y, Huaidong Y, Yue Y, Guolin Z. Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J Ethnopharmacol. 2005;96:151–58.PubMedCrossrefGoogle Scholar

  • [226]

    El Hadri A, Del Rio MAG, Sanz J, González Coloma A, Idaomar M, Ozonas BR, Cytotoxic activity of α-humulene and transcaryophyllene from Salvia officinalis in animal and human tumor cells. An R Acad Nac Farm. 2010;76:343–56.Google Scholar

  • [227]

    Su J, Lai H, Chen J, Li L, Wong YS, Chen T, Natural borneol, a monoterpenoid compound, potentiates selenocystine-induced apoptosis in human hepatocellular carcinoma cells by enhancement of cellular uptake and activation of ROS-mediated DNA damage. PLOS One. 2013;8:1–11.Google Scholar

  • [228]

    Zuccarini P, Camphor: risks and benefits of a widely used natural product. J Appl Sci Environ Manage. 2009;13:69–74.Google Scholar

  • [229]

    Richardson JSM, Sethi G, Lee GS, Abdul Malek SN, Chalepin: isolated from Ruta angustifolia L. Pers induces mitochondrial mediated apoptosis in lung carcinoma cells. BMC Complement Altern Med. 2016;16:389–93.PubMedCrossrefGoogle Scholar

  • [230]

    Sonboli A, Esmaeli MA, Gholipour A, Kanani M. Composition, cytotoxicity and antioxidant activity of the essential oil of Dracocephalum surmandinum from Iran. Nat Product communicat. 2010;5:341–4.Google Scholar

  • [231]

    Zhang Z, Guo S, Liu X, Gao X. Synergistic antitumor effect of α-pinene and β-pinene with paclitaxel against non-small-cell lung carcinoma (NSCLC). Drug Res. 2015;65:214–8.Google Scholar

  • [232]

    Ferraz RPC, Bomfim DS, Carvalho NC, Soares MBP, Da Silva TB, Machadoe WJ, Cytotoxic effect of leaf essential oil of Lippia gracilis Schauer (Verbenaceae). Phytomed. 2013;20:615–21.CrossrefGoogle Scholar

  • [233]

    Hogan FS, Krishnegowda NK, Mikhailova M, Kahlenberg MS. Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. J Surg Res. 2007;143:58–65.CrossrefPubMedGoogle Scholar

  • [234]

    Abbas S, Saleem H, Gill MSA, Bajwa AM, Omer MO. Physicochemical, phytochemical and nutritional values determination of Suaeda fruticosa (Chenopodiaceae). Ac J Med Plants. 2016;4:1–9.Google Scholar

  • [235]

    Labbé D, Provençal M, Lamy S, Boivin D, Gingras D, Béliveau R. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr. 2009;139:646–52.CrossrefPubMedGoogle Scholar

  • [236]

    Wei PL, Tu SH, Lien HM, Chen LC, Chen CS, Wu CH, The in vivo antitumor effects on human COLO 205 cancer cells of the 4,7-dimethoxy-5-(-2-propene-1-yl)-1,3-benzodioxole (apiole) derivative of 5-substituted 4,7-dimethoxy-5-methyl-1,3-benzodioxole (SY-1) isolated from the fruiting body of Antrodia camphorata. J Cancer Res Therp. 2012;8:532–36.Google Scholar

  • [237]

    Sain S, Naoghare PK, Devi SS, Daiwile A, Krishnamurthi K, Arrigo P, Beta caryophyllene and caryophyllene oxide, isolated from Aegle marmelos, as the potent anti-inflammatory agents against lymphoma and neuroblastoma cells. Antiinflamm. Antiallergy Agents Med Chem. 2014;13:45–55.CrossrefGoogle Scholar

  • [238]

    Lee JW, Lee SO, Seo JH. Inhibitory effects of the seed extract of Myristica fragrans on the proliferation of human tumor cell lines. Kor J Pharmacogn. 2005;36:240–44.Google Scholar

  • [239]

    Ben Sghaier M, Skandrani I, Nasr N, Dijoux Franca MG, Chekir-Ghedira L, Ghedira K. and sesquiterpenes from Tecurium ramosissimum promote antiproliferation of human cancer cells and enhance antioxidant activity: A structure–activity relationship study. Environ Toxicol Pharm. 2011;32:338–46.Google Scholar

  • [240]

    Kawano M, Matsuyama K, Miyamae Y., Shinmoto H, Kchouk ME, Morio T, Antimelanogenesis effect of Tunisian herb Thymelaea hirsuta extract on B16 murine melanoma cells. Exp Dermatol . 2007;16:977–84.PubMedCrossrefGoogle Scholar

  • [241]

    Hussein SR, Marzouk MM, Ibrahim LF, Kawashty SA, Saleh NA. Flavonoids of Zygophyllum album L.f. and Zygophyllum simplex L. (Zygophyllaceae). Biochem System Eco. 2011;39:778–80.CrossrefGoogle Scholar

About the article

Received: 2017-04-15

Accepted: 2017-06-06

Published Online: 2017-09-13


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design;in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Journal of Complementary and Integrative Medicine, Volume 15, Issue 1, 20170052, ISSN (Online) 1553-3840, DOI: https://doi.org/10.1515/jcim-2017-0052.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ramzi A. Mothana, Jamal M. Khaled, Ali A. El-Gamal, Omar M. Noman, Ashok Kumar, Mohamed F. Alajmi, Adnan J. Al-Rehaily, and Mansour S. Al-Said
Saudi Pharmaceutical Journal, 2018
[2]
Satapat Racha, Pathomwat Wongrattanakamon, Araya Raiwa, and Supat Jiranusornkul
International Journal of Peptide Research and Therapeutics, 2018

Comments (0)

Please log in or register to comment.
Log in