Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias

4 Issues per year

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

See all formats and pricing
More options …

Evaluation of the antioxidant impact of ginger-based kombucha on the murine breast cancer model

Samaneh Salafzoon / Hamideh Mahmoodzadeh Hosseini
  • Corresponding author
  • Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raheleh Halabian
  • Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-21 | DOI: https://doi.org/10.1515/jcim-2017-0071



Abnormal metabolism is a common event in cancerous cells. For example, the increase of reactive oxygen species (ROS) production, particularly due to aerobic respiration during invasive stage, results in cancer progression. Herein, the impact of kombucha tea prepared from ginger on the alteration of antioxidant agents was assessed in the breast cancer animal model.


Two types of kombucha tea with or without ginger were administered to BALB/c mice before and after tumor challenge. Superoxide dismutase (SOD), catalase, glutathione (GSH) and malondialdehyde (MDA) were evaluated in tumor, liver and kidney.


Administration of kombucha ginger tea significantly decreased catalase activity as well as GSH and MDA level in tumor homogenate (p<0.001). A significant decrease in SOD activity and increase in MDA quantity was determined in the kidney which had received kombucha ginger tea (p<0.01).


The consumption of kombucha prepared from ginger could exert minor antioxidant impacts by balancing multi antioxidant factors in different tissues in the breast cancer models.

Keywords: breast cancer; ginger; kombucha; oxidative stress; probiotic


  • [1]

    Croce CM. Oncogenes and cancer. N Engl J Med. 2008;358:502–11.PubMedCrossrefGoogle Scholar

  • [2]

    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked?. Free Radic Biol Med. 2010;49:1603–16.CrossrefWeb of SciencePubMedGoogle Scholar

  • [3]

    Zhou D, Shao L, Spitz DR. Reactive oxygen species in normal and tumor stem cells. Adv Cancer Res. 2014;122:1–67.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [4]

    Brigelius-Flohe R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830:3289–303.PubMedCrossrefGoogle Scholar

  • [5]

    Bayer JL, Spitz DR, Christensen D, McCormick ML, Farley D, DeGeest K, et al. Biobehavioral and neuroendocrine correlates of antioxidant enzyme activity in ovarian carcinoma. Brain Behav Immun. 2015;50:58–62.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [6]

    Sarsour EH, Kalen AL, Xiao Z, Veenstra TD, Chaudhuri L, Venkataraman S, et al. Manganese superoxide dismutase regulates a metabolic switch during the mammalian cell cycle. Cancer Res. 2012;72:3807–16.Web of SciencePubMedCrossrefGoogle Scholar

  • [7]

    Chabner BA, Roberts Jr, TG. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5:65–72.CrossrefPubMedGoogle Scholar

  • [8]

    Castrellon AB, Glück S. Chemoprevention of breast cancer. Expert Rev Anticancer Ther. 2008;8:443–52.CrossrefGoogle Scholar

  • [9]

    Khani S, Hosseini HM, Taheri M, Nourani MR, Imani Fooladi AA. Probiotics as an alternative strategy for prevention and treatment of human diseases: a review. Inflamm Allergy Drug Targets. 2012;11:79–89.CrossrefGoogle Scholar

  • [10]

    Dutta D, Gachhui R. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol. 2007;57:353–7.CrossrefWeb of SciencePubMedGoogle Scholar

  • [11]

    Chen C, Liu BY. Changes in major components of tea fungus metabolites during prolonged fermentation. J Appl Microbiol. 2000;89:834–9.PubMedCrossrefGoogle Scholar

  • [12]

    Sreeramulu G, Zhu Y, Knol W. Kombucha fermentation and its antimicrobial activity. J Agric Food Chem. 2000;48:2589–94.CrossrefPubMedGoogle Scholar

  • [13]

    Bhattacharya S, Gachhui R, Sil PC. Hepatoprotective properties of kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis. Pathophysiology: Off J Int Soc Pathophysiology/ISP. 2011;18:221–34.CrossrefGoogle Scholar

  • [14]

    Yang Z, Zhou F, Ji B, Li B, Luo Y, Yang L, et al. Symbiosis between microorganisms from kombucha and kefir: potential significance to the enhancement of kombucha function. Appl Biochem Biotechnol. 2010;160:446–55.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [15]

    Banerjee D, Hassarajani SA, Maity B, Narayan G, Bandyopadhyay SK, Chattopadhyay S. Comparative healing property of kombucha tea and black tea against indomethacin-induced gastric ulceration in mice: possible mechanism of action. Food Funct. 2010;1:284–93.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [16]

    Park EJ, Pezzuto JM. Botanicals in cancer chemoprevention. Cancer Metastasis Rev. 2002;21:231–55.PubMedCrossrefGoogle Scholar

  • [17]

    Lee DH, Kim DW, Jung CH, Lee YJ, Park D. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells. Toxicol Appl Pharmacol. 2014;279:253–65.CrossrefWeb of SciencePubMedGoogle Scholar

  • [18]

    Prasad S, Tyagi AK. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Pract. 2015;2015:142979.PubMedWeb of ScienceGoogle Scholar

  • [19]

    Mangprayool T, Kupittayanant S, Chudapongse N. Participation of citral in the bronchodilatory effect of ginger oil and possible mechanism of action. Fitoterapia. 2013;89:68–73.Web of ScienceCrossrefPubMedGoogle Scholar

  • [20]

    Hoferl M, Stoilova I, Wanner J, Schmidt E, Jirovetz L, Trifonova D, et al. Composition and comprehensive antioxidant activity of ginger (Zingiber officinale) essential oil from ecuador. Nat Prod Commun. 2015;10:1085–90.PubMedGoogle Scholar

  • [21]

    Tan BS, Kang O, Mai CW, Tiong KH, Khoo AS, Pichika MR, et al. 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor gamma (PPARgamma). Cancer Lett. 2013;336:127–39.CrossrefPubMedGoogle Scholar

  • [22]

    Liu Y, Whelan RJ, Pattnaik BR, Ludwig K, Subudhi E, Rowland H, et al. Terpenoids from zingiber officinale (Ginger) induce apoptosis in endometrial cancer cells through the activation of p53. PLoS One. 2012;7:e53178.CrossrefWeb of ScienceGoogle Scholar

  • [23]

    Jeena K, Liju VB, Kuttan R. Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger. Indian J Physiol Pharmacol. 2013;57:51–62.PubMedGoogle Scholar

  • [24]

    Tsuboi K, Matsuo Y, Shamoto T, Shibata T, Koide S, Morimoto M, et al. Zerumbone inhibits tumor angiogenesis via NF-kappaB in gastric cancer. Oncol Rep. 2014;31:57–64.PubMedCrossrefGoogle Scholar

  • [25]

    Park GH, Park JH, Song HM, Eo HJ, Kim MK, Lee JW, et al. Anti-cancer activity of ginger (Zingiber officinale) leaf through the expression of activating transcription factor 3 in human colorectal cancer cells. BMC Complement Altern Med. 2014;14:408.CrossrefWeb of SciencePubMedGoogle Scholar

  • [26]

    Imani Fooladi AA, Halabian R, Mahdavi M, Amin M, Mahmoodzadeh Hosseini H. Staphylococcal enterotoxin B/texosomes as a candidate for breast cancer immunotherapy. Tumour Biol. 2016;37:739–48.CrossrefPubMedGoogle Scholar

  • [27]

    Winterbourn CC, Hawkins RE, Brian M, Carrell RW. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 1975;85:337–41.PubMedGoogle Scholar

  • [28]

    Aebi H. Catalase in vitro. Meth Enzymol. 1984;105:121–6.PubMedCrossrefGoogle Scholar

  • [29]

    Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27:502–22.CrossrefPubMedGoogle Scholar

  • [30]

    Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta. 1978;90:37–43.CrossrefPubMedGoogle Scholar

  • [31]

    Jayabalan R, Malbaša RV, Lončar ES, Js V, Sathishkumar M. A review on kombucha tea—microbiology,composition, fermentation, beneficial effects,toxicity, and tea fungus. Compr Rev Food Sci Food Saf. 2014;13:538–50.CrossrefGoogle Scholar

  • [32]

    Dufresne CF, Tea E. Kombucha, and health: a review. Food Res Int. 2000;33:409–21.CrossrefGoogle Scholar

  • [33]

    Deghrigue M, Dellai A, Akremi N, Le Morvan V, Robert J, Bouraoui A. Evaluation of antiproliferative and antioxidant activities of the organic extract and its polar fractions from the mediterranean gorgonian Eunicella singularis. Environ Toxicol Pharmacol. 2013;36:339–46.Web of SciencePubMedCrossrefGoogle Scholar

  • [34]

    Haghshenas B, Nami Y, Abdullah N, Radiah D, Rosli R, Ay K. Anticancer impacts of potentially probiotic acetic acid bacteriaisolated from traditional dairy microbiota. LWT Food Sci Technol. 2015;60:690–7.CrossrefGoogle Scholar

  • [35]

    Hu R, Zhou P, Peng YB, Xu X, Ma J, Liu Q, et al. 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress. PLoS One. 2012;7:e39664.CrossrefWeb of ScienceGoogle Scholar

  • [36]

    Bastos-Pereira AL, Lugarini D, Oliveira-Christoff A, Avila TV, Teixeira S, Pires Ado R, et al. Celecoxib prevents tumor growth in an animal model by a COX-2 independent mechanism. Cancer Chemother Pharmacol. 2010;65:267–76.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-07-19

Accepted: 2017-08-09

Published Online: 2017-10-21

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Journal of Complementary and Integrative Medicine, Volume 15, Issue 1, 20170071, ISSN (Online) 1553-3840, DOI: https://doi.org/10.1515/jcim-2017-0071.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in