Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

See all formats and pricing
More options …

Inhibitory effects of Tiliacora triandra (Colebr.) Diels on cholesterol absorption

Acharaporn DuangjaiORCID iD: https://orcid.org/0000-0002-5153-8738
  • Corresponding author
  • Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
  • Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
  • orcid.org/0000-0002-5153-8738
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Surasak SaokaewORCID iD: https://orcid.org/0000-0002-1382-0660
  • Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
  • School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
  • orcid.org/0000-0002-1382-0660
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-12 | DOI: https://doi.org/10.1515/jcim-2017-0169



Natural supplements and herbal medicines have been attracted to use for managing elevated cholesterol levels. Tiliacora triandra (Colebr.) Diels (TT) or Yanang (in Thai) is commonly used as an ingredient in various types of Thai foods. In this study, we investigated the effect of methanolic TT leaf extract on cholesterol absorption by measuring the uptake and the efflux of cholesterol and cholesterol micellar solubility. In addition, we tested the effect of TT leaf extract on pancreatic lipase activity.


The uptake and efflux of cholesterol was determined by quantification of radioactivity in differentiated Caco-2 cells after treatment with radioactive cholesterol. Cholesterol mixed micelles were prepared for cholesterol uptake, efflux and solubility studies. The pancreatic lipase activity was determined using 4-methylumbelliferyl oleate as a substrate.


Our finding showed that TT extract decreased the uptake of cholesterol by approximately 48% but did not affect the efflux of cholesterol. TT inhibited pancreatic lipase activity with the IC50 at 273.5 μg/mL and also decreased cholesterol micellar solubility.


These findings suggest that TT leaf extract seems to be a potential candidate as cholesterol-lowering agents.

Keywords: Caco-2 cells; cholesterol uptake; micelles solubility; pancreatic lipase, T. Triandra; Yanang


  • [1]

    van der Wulp MYM, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis. Mol Cell Endocrinol. 2013;368:1–16.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [2]

    Wang DQ. Regulation of intestinal cholesterol absorption. Annu Rev Physiol. 2007;69:221–48.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [3]

    Weingartner O, Lutjohann D, Bohm M, Laufs U. Relationship between cholesterol synthesis and intestinal absorption is associated with cardiovascular risk. Atherosclerosis. 2010;210:362–5.CrossrefWeb of SciencePubMedGoogle Scholar

  • [4]

    Barbagallo CM, Cefalu AB, Noto D, Averna MR. Role of nutraceuticals in hypolipidemic therapy. Front Cardiovasc Med. 2015;2:22.PubMedGoogle Scholar

  • [5]

    Jesch ED, Carr TP. Sitosterol reduces micellar cholesterol solubility in model bile. Nutr Res. 2006;26:579–84.CrossrefGoogle Scholar

  • [6]

    Won SR, Kim SK, Kim YM, Lee PH, Ryu JH, Kim JW, et al. Licochalcone A: a lipase inhibitor from the roots of Glycyrrhiza uralensis. Food Res Int. 2007;40:1046–50.Web of ScienceCrossrefGoogle Scholar

  • [7]

    Boonsong P, Laohakunjit N, Kerdchoechuen O. Identification of polyphenolic compounds and colorants from Tiliacora triandra (Diels) leaves. Agricultural Sci J. 2009;40:13–6.Google Scholar

  • [8]

    Sureram S, Senadeera S, Hongmanee P, Mahidol C, Ruchirawat S, Kittakoop P. Antimycobacterial activity of bisbenzylisoquinoline alkaloids from Tiliacora triandra against multidrug-resistant isolates of Mycobacterium tuberculosis. Bioorg Med Chem Lett. 2012;22:2902–5.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [9]

    Prasitpuriprecha C, Damkliang A, Surintha P, Deelum W. Immunomodulating, antioxidant and antimicrobial activities of northeastern Thai edible plant and medicinal plant extracts. IJPS. 2009;5:99–107.Google Scholar

  • [10]

    Ikeyami F, Duangteraprecha S, Kurimura N, Fujii Y, Aburada M, Ruangrungsi N, et al. Chemical and biological studies on some Thai medicinal plants. J Sci Soc. 1990;16:25–31.Google Scholar

  • [11]

    Katisart T, Rattana S. Hypoglycemic activity of leaf extracts from Tiliacora triandra in normal and streptozotocin-induced diabetic rats. Phcog J. 2017;9:5.Google Scholar

  • [12]

    Phunchago N, Wattanathorn J, Chaisiwamongkol K. Tiliacora triandra, an anti-intoxication plant, improves memory impairment, neurodegeneration, cholinergic function, and oxidative stress in hippocampus of ethanol dependence rats. Oxid Med Cell Longev. 2015;Article ID 918426.Web of ScienceGoogle Scholar

  • [13]

    Nanna U, Naowaboot J, Chularojmontri L. Effects of Tiliacora triandra leaf water extract in high-fat diet fed mice. J Med Assoc Thai. 2017;100:78.Google Scholar

  • [14]

    Yamanashi Y, Takada T, Suzuki H. Niemann-Pick C1-Like 1 overexpression facilitates ezetimibe-sensitive cholesterol and β-sitosterol uptake in Caco-2 cells. J Pharmacol Exp Ther. 2007;320:559–64.PubMedWeb of ScienceGoogle Scholar

  • [15]

    Tachibana S, Hirano M, HiraTa T, Matsuo M, Ikeda I, Ueda K, et al. Cholesterol and plant sterol efflux from cultured intestinal epithelial cells is mediated by ATP-Binding Cassette transporters. Biosci Biotechnol Biochem. 2007;71:1886–95.CrossrefWeb of SciencePubMedGoogle Scholar

  • [16]

    Kirana C, Rogers PF, Bennett LE, Abeywardena MY, Patten GS. Naturally derived micelles for rapid in vitro screening of potential cholesterol-lowering bioactivities. J Agric Food Chem. 2005;53:4623–7.CrossrefGoogle Scholar

  • [17]

    Nakai M, Fukui Y, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H, et al. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem. 2005;53:4593–98.CrossrefPubMedGoogle Scholar

  • [18]

    Cohn JS, Kamili A, Wat E, Chung RW, Tandy S. Dietary phospholipids and intestinal cholesterol absorption. Nutrients. 2010;2:116–27.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [19]

    Wang HH, Patel SB, Carey MC, Wang DQ. Quantifying anomalous intestinal sterol uptake, lymphatic transport, and biliary secretion in Abcg8(-/-) mice. Hepatology. 2007;45:998–1006.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    Sireeratawong S, Lertprasertsuke N, Srisawat U, Thuppia A, Ngamjariyawat A, Suwanlikhid N, et al. Acute and subchronic toxicity study of the water extract from Tiliacora triandra (Colebr.) Diels in rats. Songklanakarin J Sci Technol. 2008;30:611–9.Google Scholar

  • [21]

    Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiology-Endocrinol Metabolism. 2009;296:E1183–94.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem. 2007;282:19493–501.CrossrefWeb of SciencePubMedGoogle Scholar

  • [23]

    Altmann SW, Davis HR Jr, Yao X, Laverty M, Compton DS, Zhu LJ, et al. The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochimica et Biophysica Acta. 2002;1580:77–93.CrossrefGoogle Scholar

  • [24]

    Yao SL, Xu Y, Zhang YY, Lu YH. Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Food Funct. 2013;4:1602–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [25]

    Duangjai A, Limpeanchob N, Trisat K, Amornlerdpison D. Spirogyra neglecta inhibits the absorption and synthesis of cholesterol in vitro. IMR. 2016;5:301–8.PubMedGoogle Scholar

  • [26]

    Young SC, Hui DY. Pancreatic lipase/colipase-mediated triacylglycerol hydrolysis is required for cholesterol transport from lipid emulsions to intestinal cells. Biochem J. 1999;339:615–20.CrossrefPubMedGoogle Scholar

  • [27]

    Huggins KW, Camarota LM, Howles PN, Hui DY. Pancreatic triglyceride lipase deficiency minimally affects dietary fat absorption but dramatically decreases dietary cholesterol absorption in mice. J Biol Chem. 2003;278:42899–905.PubMedCrossrefGoogle Scholar

  • [28]

    Mittendorfer B, Ostlund RE, Patterson BW, Klein S. Orlistat inhibits dietary cholesterol absorption. Obes Res. 2001;9:599–604.PubMedCrossrefGoogle Scholar

  • [29]

    Woollett LA, Wang Y, Buckley DD, Yao L, Chin S, Granholm N, et al. Micellar solubilisation of cholesterol is essential for absorption in humans. Gut. 2006;55:197–204.CrossrefPubMedGoogle Scholar

  • [30]

    Nagaoka S, Miwa K, Eto M, Kuzuya Y, Hori G, Yamamoto K. Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and Caco-2 cells. J Nutr. 1999;129:1725–30.PubMedCrossrefGoogle Scholar

  • [31]

    Nagaoka S, Nakamura A, Shibata H, Kanamaru Y. Soystatin (VAWWMY), a novel bile acid-binding peptide, decreased micellar solubility and inhibited cholesterol absorption in rats. Biosci Biotechnol Biochem. 2010;74:1738–41.CrossrefWeb of SciencePubMedGoogle Scholar

  • [32]

    Ngamukote S, Makynen K, Thilawech T, Adisakwattana S. Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules. 2011;16:5054–61.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [33]

    Ikeda I, Yamahira T, Kato M, Ishikawa A. Black-tea polyphenols decrease micellar solubility of cholesterol in vitro and intestinal absorption of cholesterol in rats. J Agric Food Chem. 2010;58:8591–5.CrossrefWeb of SciencePubMedGoogle Scholar

  • [34]

    Tippayakul C, Pongsamart S, Suksomtip M. Lipid entrapment property of polysaccharide gel (PG) extracted from fruit-hulls of durian (Durio zibethinus Murr. Cv. Mon-Thong). Songklanakarin J Sci Technol. 2005;27:291–300.Google Scholar

  • [35]

    Singthong J, Ningsanond S, Cui SW. Extraction and physicochemical characterisation of polysaccharide gum from Yanang (Tiliacora triandra) leaves. Food Chem. 2009;114:1301–7.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-12-07

Accepted: 2018-08-20

Published Online: 2018-10-12

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report or in the decision to submit the report for publication.

Citation Information: Journal of Complementary and Integrative Medicine, Volume 16, Issue 1, 20170169, ISSN (Online) 1553-3840, DOI: https://doi.org/10.1515/jcim-2017-0169.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in