Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias


CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

Online
ISSN
1553-3840
See all formats and pricing
More options …

Ethnomedicinal, phytochemical and pharmacological profile of a mangrove plant Ceriops Decandra GriffDin Hou.

Imran Mahmud
  • Department of Pharmacy, Khwaja Yunus Ali University, Enayetpur, Sirajgonj, Bangladesh
  • Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Naznin Shahria / Sabina Yeasmin / Asif Iqbal / Emdadul Hasan Mukul / Sudipta Gain / Jamil Ahmad Shilpi / Md. Khirul Islam
  • Corresponding author
  • Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
  • Department of Biochemistry, Division of Biotechnology, University of Turku, Turku, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-22 | DOI: https://doi.org/10.1515/jcim-2017-0129

Abstract

Ceriops decandra is a mangrove tree species, reputed for its folkloric uses in the treatment of gastrointestinal disorders, infection, snakebites, inflammation, and cancer. Different parts of the plant are rich with various phytoconstituents which include diterpenoids (ceriopsin A-G), triterpenoids (lupeol, α-amyrin, oleanolic acid, ursolic acid), and phenolics (catechin, procyanidins).These phytoconstituents and their derivatives could form a new basis for developing new drugs against various diseases. The objective of the present study is to compile the phytochemical, ethnobotanical, biological, and pharmacological significance of the plant to provide directions for future research to find out therapeutically active lead compounds for developing new drugs against diseases of current interest including diabetes, inflammation, and cancer.

Keywords: diterpenoids & triterpenoids; ethnomedicinal; pharmacological

References

  • [1]

    Tomilson PB. The botany of mangroves. Cambridge: Cambridge University Press; 1986. p. 374–81.Google Scholar

  • [2]

    Bandaranayake WM. Traditional and medicinal uses of mangroves. Mang Salt Marsh. 1998;2:133–48.CrossrefGoogle Scholar

  • [3]

    Watt JM, Breyer-Brandwijk MG. The medicinal and poisonous plants of southern and eastern Africa. 2nd ed. Edinburgh and London: E & S. Livingstone Ltd; 1962.Google Scholar

  • [4]

    Duke JA, Wain KK. Medicinal plants of the world, computer index with more than 85,000 entries. vol. 3. U.K: Longman group Ltd; 1981.Google Scholar

  • [5]

    Kathiresan K, Ramanathan T. Medicinal plants of Parangipettai Coast, Monograph. Parangipettai, India: Annamalai University; 1997. p. 79.Google Scholar

  • [6]

    Wu Jun, Xiao Qiang, Xu Jing, Li Min-Yi, Pan Jian-Yu, Yang Mei-hua. Natural products from true mangrove flora: source, chemistry and bioactivities. Natural Product Reports. 2008;25(5):955. DOI: .CrossrefPubMedGoogle Scholar

  • [7]

    Huang Yelin, Tan Fengxiao, Su Guohua, Deng Shulin, He Hanghang, Shi Suhua. Population genetic structure of three tree species in the mangrove genus Ceriops (Rhizophoraceae) from the Indo West Pacific. Genetica. 2007 8 10;133(1):47–56..CrossrefPubMedGoogle Scholar

  • [8]

    . The medicinal and poisonous plants of southern and eastern Africa, 2nd ed. Edinburgh and London: E & S. Livingstone Ltd, 1962.Google Scholar

  • [9]

    Lin P, Fu Q. Environmental ecology and economic utilization of mangroves in China (in Chinese). Beijing: Higher Education Press; 1995. p. 1–95.Google Scholar

  • [10]

    Ko WC. In Flora Reipublicae Popularis Sinicae. Fang W-P, Chang C-Y, Eds. vol. 52. Beijing: Science Press. 2009: 130–2.Google Scholar

  • [11]

    Lin P. Marine higher plant ecology. Beijing: Science Press; 2006. p. 76–80.Google Scholar

  • [12]

    Rastogi RP, Mehrotra BN. Compendium of Indian medicinal plants. vol. 1. New Delhi: Publications & Information Directorate; 1991.Google Scholar

  • [13]

    Mujeeb Farina, Bajpai Preeti, Pathak Neelam. Phytochemical Evaluation, Antimicrobial Activity, and Determination of Bioactive Components from Leaves ofAegle marmelos. BioMed Research International. 2014;2014:1–11..CrossrefGoogle Scholar

  • [14]

    The botany of mangroves. Cambridge: Cambridge University Press, 1986:374–81.Google Scholar

  • [15]

    Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, et al. A world without mangroves? Science. 2007;317:41–2.PubMedCrossrefGoogle Scholar

  • [16]

    Robertson AI, Alongi DM, eds. Tropical mangrove ecosystems. Coastal and Estuarine Studies 41. Washington, DC: American Geophysical Union; 1992:329.Google Scholar

  • [17]

    Das S, Ghose M. Pollen morphology of some mangrove plants of Sunderbans, West Bengal. J Natl Bot Soc (India). 1990;44:59–75.Google Scholar

  • [18]

    Sheue CR, Liu HY, Tsai CC, Rashid SMA, Yong JWH, Yang YP. On the morphology and molecular basis of segregation of Ceriops zippeliana and C. decandra (Rhizophoraceae) from Asia. Blumea. 2009;54:220–7.CrossrefGoogle Scholar

  • [19]

    Bandaranayake WM. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecol Manag. 2002;10:421–52.CrossrefGoogle Scholar

  • [20]

    Bandaranayake WM. Traditional and medicinal uses of mangroves. Mang Salt Marshes. 1998;2:133–48.CrossrefGoogle Scholar

  • [21]

    Pattanaik C, Reddy CS, Dhal NK, Das R. Utilisation of mangrove forests in Bhitarkanika wildlife sanctuary, Orissa. Indian J Trad Knowl. 2008;7(4):598–603.Google Scholar

  • [22]

    Kirtikar KR, Basu BD. Indian medicinal plants. 2nd ed. India: International Book Distributors; 1999. p. 1012.Google Scholar

  • [23]

    Raju AJS, Jonathan KH, Rao SP. Traditional extraction of bark tannin from the mangrove tree, ceriops decandra (griff.) Ding Hou and its use in treating cotton fishing nets. Nat Prod Rad. 2008;7:173–5.Google Scholar

  • [24]

    Duke JA, Wain KK. Medicinal plants of the world, computer index with more than 85,000 entries, Vol. Three. U.K: Longman group Ltd; 1981.Google Scholar

  • [25]

    Magwa ML, Gundidza M, Gweru N, Humphrey G. Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum. J Ethnopharmacol. 2005;103:85.PubMedGoogle Scholar

  • [26]

    Uddin SJ, Shilpi JA, Barua J, Rouf R. Antinociceptive activity of Ceriops decandra leaf and pneumatophore. Fitoterapia. 2005;76:261–3.CrossrefPubMedGoogle Scholar

  • [27]

    Anjaneyulu ASR, Rao VL, Lobkovsky E, Clardy J. Ceriopsin E, a new epoxy ent-Kaurene Diterpenoid from Ceriops decandra. J Nat Prod. 2002;65:592–4.PubMedCrossrefGoogle Scholar

  • [28]

    Anjaneyulu ASR, Rao VL. Ceriopsins F and G, diterpenoids from ceriops decandra. Phytochemistry. 2003;62:1207–11.CrossrefGoogle Scholar

  • [29]

    Anjaneyulu ASR, Rao VL, Ceriopsins A–D. diterpenoids from Ceriops decandra. Phytochemistry. 2002;60:777–82.CrossrefPubMedGoogle Scholar

  • [30]

    Kumar VA, Ammani K, Siddhardha B, Sreedhar U, Kumar GA. Differential biological activities of the solvent extracts of Ceriops decandra (Griff.) and their phytochemical investigations. J Pharm Res. 2013 July;7:654–60.Google Scholar

  • [31]

    Ponglimanont C, Thongdeeying P. Lupane-triterpene esters from the leaves of Ceriops decandra (Griff.). Ding Hou Aust J Chem. 2005;58:615–8.CrossrefGoogle Scholar

  • [32]

    Pakhathirathien C, Chantrapromma S, Fun H-K, Anjum S, Atta-ur-Rahman C, Karalaia C. 1-Isoprpenyl-3a,5a,5b,8,8,11a-hexamethylicosahydro-1H-cyclopenta-[a]chrysene-9-yl 4-hydroxy-3-methoxycinnamate. Acta Crystallogr Sect. 2005;61:2942–4.Google Scholar

  • [33]

    Seshadri TR, Trikha RK. Procyanidins of Ceriops roxburghiana and Rhizophora conjugata. Ind JChem. 1971;9:928–30.Google Scholar

  • [34]

    Ghosh A, Misra S, Dutta AK, Choudhury A. Pentacyclic terpenoids and steroids from seven species of mangrove. Phytochemistry. 1985;24:1725–7.CrossrefGoogle Scholar

  • [35]

    Wang H, Li MY, Satyanandamurty T, Wu J. New diterpenes from a Godavari mangrove, Ceriops decandra. Planta Med. 2013;79:666–72.PubMedCrossrefGoogle Scholar

  • [36]

    Simlai A, Mukherjee K, Mandal A, Bhattacharya K, Samanta A, Roy A. Partial purification and characterization of an antimicrobial activity from the wood extract of mangrove plant Ceriops decandra. EXCLI J. 2016;15:103–12.PubMedGoogle Scholar

  • [37]

    Vadlapudi V, Naidu KC. In vitro antimicrobial activity Ceriops decandra against selected aquatic, human and phytopathogens. Int J Chem Tech Res. 2009;1:1236–8.Google Scholar

  • [38]

    Chandrasekaran M, Kannathasan K, Venkatesalu V, Prabhakar K. Antibacterial activity of some salt marsh halophytes and mangrove plants against methicillin resistant Staphylococcus aureus. World J Microbiol Biotechnol. 2009;25:155–60.CrossrefGoogle Scholar

  • [39]

    Ravikumar S, Gnanadesigan M, Suganthi P, Ramalakshmi A. Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens. Int J Med Med Sci. 2010;2:94–9.Google Scholar

  • [40]

    Simlai A, Roy A. Analysis of and correlation between phytochemical and antimicrobial constituents of Ceriops decandra, a medicinal mangrove plant, from Indian Sundarban estuary. J Med Plants Res. 2012 August 22;6:4755–65.Google Scholar

  • [41]

    Nebula M, Harisankar HS, Chandramohanakumar N. Metabolites and bioactivities of Rhizophoraceae mangroves. Nat Prod Bioprospect. 2013;3:207–32.CrossrefGoogle Scholar

  • [42]

    Wu J, Xiao Q, Xu J, Li MY, Pan JY, Yang MH. Natural products from true mangrove flora: source, chemistry and bioactivities. Nat Prod Rep. 2008;25:955–81.CrossrefPubMedGoogle Scholar

  • [43]

    Gnanadesigana M, Ravikumar S, Anand M. Hepatoprotective activity of Ceriops decandra (Griff.) Ding Houmangrove plant against CCl4 induced liver damage. J Taibah Univ Sci. 2017;11:450–7.CrossrefGoogle Scholar

  • [44]

    Vundru AK, Kandru A, Busi S, Uppalapati S, Gudapati AK. Differential biological activities of the solvent extracts of Ceriops decandra (Griff.) and their phytochemical investigations. J Pharm Res. 2013;7:654–60.Google Scholar

  • [45]

    Kathiresan K, Veera Ravi A. Seasonal changes in tannin content of mangrove leaves. Ind For. 1990;116:390–2.Google Scholar

  • [46]

    Boopathy NS, Kandasamy K, Subramanian M, You-Jin J. Effect of mangrove tea extract from Ceriops decandra (Griff.) Ding Hou. on salivary bacterial flora of DMBA induced Hamster Buccal Pouch Carcinoma. Indian J Microbiol. 2011 Jul;51:338–44. Epub 2011 Feb 27. DOI: CrossrefGoogle Scholar

  • [47]

    Padmakumar K (1988). Bioactive substances from marine algae and mangroves. Ph.D Thesis, Annamalai University, Parangipettai p. 81.Google Scholar

  • [48]

    Duke JA, Wain KK. Medicinal plants of the world. Essex: Longman Group UK; 1981.Google Scholar

  • [49]

    Trapp S, Croteau R. Defensive resian biosynthesis in conifers. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:689–724.CrossrefPubMedGoogle Scholar

  • [50]

    Perry LM. Medicinal plants of East and Southeast Asia. Cambridge: MIT Press; 1980.Google Scholar

  • [51]

    Bandaranayake WM. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wet. Ecol Manag. 2002;10:421–52.CrossrefGoogle Scholar

  • [52]

    Wang H, Lia M-Y, Jun W. Chemical constituents and some biological activities of plants from the genus Ceriops – review. Chem Biodivers.2012;9:1–11.CrossrefPubMedGoogle Scholar

  • [53]

    Ravikumar S, Inbaneson SJ, Suganthi P, Gnanadesigan M. In vitro antiplasmodial activity of ethanolic extracts of mangrove plants from South East coast of India against chloroquine-sensitive Plasmodium falciparum. Parasitol Res. 2011;108:873–78.CrossrefGoogle Scholar

  • [54]

    Kathiresan K. Ravindran VS and MaruganathamV. Mangrove plant extract prevent the blood coagulate!. Indian J Biotech. April 2006;5:252–4.Google Scholar

  • [55]

    Bunyapraphatsara N, Jutiviboonsuk V, Sornlek P, Therathanathorn W, Aksornkaew S, Fong HHS, et al. Pharmacological studies of plants in the mangrove. Thai J Phytopharmacy. 2003;10:1–12.Google Scholar

  • [56]

    Ravikumar S, Ramanathan G, Gnanadesigan M. In vitro antiplasmodial activity of spiro benzofuran compound from mangrove plant of Southern India. Asian Pac J Trop Med. 2012;5(5):358–61.CrossrefPubMedGoogle Scholar

  • [57]

    Premanathan M, Nakashima H, Kathiresan K, Rajendra N, Yamamoto N. In vitro anti human immunodeficiency virus activity of mangrove plants. Indian J Med Res. 1996 May;103:278–81.PubMedGoogle Scholar

  • [58]

    Premanathan M, Kathiresan K, Chandra K. Antiviral evaluation of some marine plants against Semliki Forest virus. Int J Pharmacognosy. 1995;33:75–7.CrossrefGoogle Scholar

  • [59]

    Bakshi M, Chaudhuri P. Antimicrobial potential of leaf extracts of ten mangrove species from Indian sundarban. Int J Pharm Bio Sci. 2014 Jan;5:294–304.Google Scholar

  • [60]

    Ravikumar S, Ramanathan G, Subhakaran M, Inbaneson SJ. Antimicrobial compounds from marine halophytes for silkworm disease treatment. Int J Med Med Sci. 2009 May;1:184–91.Google Scholar

  • [61]

    Ravikumar S, Syed Ali M, Ramu A, Ferosekhan M. Antibacterial activity of chosen mangrove plants against bacterial specified pathogens. World Appl Sci J. 2011;14:1198–202.Google Scholar

  • [62]

    Uddin SJ, Rouf R, Shilpi JA, Alamgir M, Nahar L, Sarker SD. Screening of some Bangladeshi medicinal plants for in vitro antibacterial activity. Orient Pharm Exp Med. 2008;8:316–21.CrossrefGoogle Scholar

  • [63]

    Kumar VA, Ammani K, Siddhardha B. In vitro antimicrobial activity of leaf extracts of certain mangrove plants collected from Godavari estuarine of Konaseema delta. India Int J Med Arom Plants. 2011;1:132–6.Google Scholar

  • [64]

    Nabeel MA, Kathiresan K, Manivannan S. Antidiabetic activity of the mangrove species Ceriops decandra in alloxan-induced diabetic rats. J Diabetes. 2010;2:97–103.PubMedCrossrefGoogle Scholar

  • [65]

    Hossain MH, Hassan MM, Jahan IA, Nimmi I. Antidiarrhoeal activity, nitric oxide scavenging and total tannin content from the bark of Ceriops decandra (griff.) Ding hou. Int J Pharm Sci Res. 2012;3:1306–11.Google Scholar

  • [66]

    Hossain H, Moniruzzaman S, Nimmi I, Kawsar H, Hossain A, Islam A, et al. Anti-inflammatory and antioxidant activities of the ethanolic extract of Ceriops decandra (Griff.) Ding Hou bark. Orient Pharm Exp Med. 2011 December;11:215–20.CrossrefGoogle Scholar

  • [67]

    Amudha P, Kumar V. Antimycobacterial activity of certain mangrove plants against multi-drug resistant Mycobacterium tuberculosis. Asian J Med Sci. 2014 Jul-Sep;5:54–7.CrossrefGoogle Scholar

  • [68]

    Uddin SJ, Shilpi JA, Barua V, Rouf V. Antinociceptive activity of Ceriops decandra leaf and pneumatophore. Fitoterapia. March 2005;76:261–3.CrossrefPubMedGoogle Scholar

  • [69]

    Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Persp. 2001;109:69–75.Google Scholar

  • [70]

    Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci. 2005;78:431–41.PubMedCrossrefGoogle Scholar

  • [71]

    Rabi T, Bishayee A. Terpenoids and breast cancer chemoprevention. BreastCancerResTreat. 2009;115:223–39.Google Scholar

  • [72]

    Wagner KH, Elmadfa I. Biological relevance of terpenoids. Overview focusing on mono-, di- and tetraterpenes. AnnNutr Metab. 2003;47:95–106.Google Scholar

  • [73]

    Sultana N, Ata A. Oleanolic acid and related derivatives asmedicinally important compounds. J Enzyme Inhib Med Chem. 2008;23:739–56.CrossrefPubMedGoogle Scholar

  • [74]

    Shah BA, Qazi GN, Taneja SC. Boswellic acids: a group of medicinally important compounds. Nat Prod Rep. 2009;26:72–89.CrossrefPubMedGoogle Scholar

  • [75]

    Setzer WN, Setzer MC. Plant-derived triterpenoids as potential antineoplastic agents. Mini Rev Med Chem. 2003;3:540–56.CrossrefPubMedGoogle Scholar

  • [76]

    Laszczyk MN. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med. 2009;75:1549–60.CrossrefGoogle Scholar

  • [77]

    Petronelli A, Pannitteri G, Testa U. Triterpenoids as new promising anticancer drugs. Anticancer Drugs. 2009;20:880–92.CrossrefPubMedGoogle Scholar

  • [78]

    Dutra LM, Bomfim LM, Rocha SL, Nepel A, Soares MB, Barison A, et al. ent-Kaurane diterpenes from the stem bark of Annona vepretorum (Annonaceae) and cytotoxic evaluation Bioorg. Med Chem Lett. 2014;24:3315–20.CrossrefGoogle Scholar

  • [79]

    Costa-Lotufo LV, Cunha GM, Farias PA, Viana GS, Cunha KM, Pessoa C, et al. The cytotoxic and embryotoxic effects of kaurenoic acid, a diterpene isolated from Copaifera langsdorffii oleo-resin. 2002; 40(8): 1231–234.Google Scholar

  • [80]

    Zhaomin Lin, Yanxia Guo, Yanhui Gao, Shuqi Wang, Xiaoning Wang, Zhiyu Xie, et al. ent-Kaurane diterpenoids from Chinese liverworts and their antitumor activities through Michael addition as detected in situ by a fluorescence probe. J Med Chem. 2015;58:3944–56.PubMedCrossrefGoogle Scholar

  • [81]

    Yang J, Wang WG, Wu HY, Du X, Li XN, Li Y, et al. Bioactive enmein-type ent-kaurane diterpenoids from Isodon phyllostachys. J Nat Prod. 2016;79:132–40.PubMedCrossrefGoogle Scholar

  • [82]

    Wang H, Li MY, Wu J. Chemical constituents and some biological activities of plants from the genus Ceriops. Chem Biodivers. 2012;9:1–11.CrossrefPubMedGoogle Scholar

  • [83]

    Fronza M, Lamy E, Günther S, Heinzmann B, Laufer S, Merfort I. Abietane diterpenes induce cytotoxic effects in human pancreatic cancer cell line MIA PaCa-2 through different modes of action. Phytochemistry. 2012;78:107–19.PubMedCrossrefGoogle Scholar

  • [84]

    Marques CG, Pedro M, Simões MF, Nascimento MS, Pinto MM, Rodríguez B. Effect of abietane diterpenes from Plectranthus grandidentatus on the growth of human cancer cell lines. Planta Med. 2002;68:839–40.CrossrefPubMedGoogle Scholar

  • [85]

    Li L, Wu L, Wang M, Sun J, Liang J. Abietane diterpenoids from Clerodendrum trichotomum and correction of NMR data of villosin C and B. Nat Prod Commun. 2014;19:907–10.Google Scholar

  • [86]

    Lin CZ, Zhao W, Feng XL, Liu FL, Zhu CC. Cytotoxic diterpenoids from Rabdosia lophanthoides var. Gerardianus. Fitoterapia. 2016;2016:14–9.Google Scholar

  • [87]

    Ji L, Liu T, Liu J, Chen Y, Wang Z. Andrographolide inhibits human hepatoma-derived Hep3B cell growth through the activation of c-Jun N-terminal kinase. Planta Med. 2007;73:1397–401.CrossrefPubMedGoogle Scholar

  • [88]

    Abudula R, P B J, S E D R, Xiao J, Rebaudioside HK. A potently stimulates insulin secretion from isolated mouse islets: studies on the dose-, glucose-, and calciumdependency. Metabolism. 2004;53:1378–81.PubMedCrossrefGoogle Scholar

  • [89]

    Johnson JJ, Syed DN, Heren CR, Suh Y, Adhami VM, Mukhtar H. Carnosol, a dietary diterpene, displays growth inhibitory effects in human prostate cancer PC3 cells leading to G2-phase cell cycle arrest and targets the 5ʹ-AMP-activated protein kinase (AMPK) pathway. Pharm Res. 2008;25:2125–34.CrossrefPubMedGoogle Scholar

  • [90]

    Nagarajan A, Diterpenes-A BP. Review on therapeutic uses with special emphasis on antidiabetic activity. J Pharm Res. 2012;5:4530–40.Google Scholar

  • [91]

    Fulda S. Betulinic acid: a natural product with anticancer activity. Mol Nutr Food Res. 2009;53:140–6.CrossrefPubMedGoogle Scholar

  • [92]

    Setzer WN, Setzer MC, Bates RB, Jackes BR. Biologically active triterpenoids of Syncarpia glomulifera extract from Paluma, North Queensland, Australia. Planta Med. 2000;66:176–7.PubMedCrossrefGoogle Scholar

  • [93]

    Amico V, Barresi V, Condorelli D, Spatafora C, Tringali C. Antiproliferative terpenoids from almond hulls (Prunus dulcis): identification and structure-activity relationships. J Agric Food Chem. 2006;54:810–4.CrossrefPubMedGoogle Scholar

  • [94]

    Rzeski W, Stepulak A, Szymański M, Sifringer M, Kaczor J, Wejksza K, et al. Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells. Naunyn-Schmeiedeberg’s Acrh Pharmacol. 2006;374:11–20.CrossrefGoogle Scholar

  • [95]

    Basu S, Ma R, Boyle PJ, Mikulla B, Bradley M, Smith B, et al. Apoptosis of human carcinoma cells in the presence of potential anti-cancer drugs: III. Treatment of Colo-205 and SKB3 cells with: cis-platin, tamoxifen, melphalan, betulic acid, L-PDMP, L-PPMP, and GD3 ganglioside. Glycoconj J. 2004;20:563–77.Google Scholar

  • [96]

    Kessler JH, Mallauer FB, De Roo GM, Medema JP. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types. Cancer Lett. 2007;251:132–45.CrossrefPubMedGoogle Scholar

  • [97]

    Eichenmüller M, Von Schweinitz D, Kappler R. Betulinic acid treatment promotes apoptosis in hepatoblastoma cells. Int J Oncol. 2009;35:873–9.PubMedGoogle Scholar

  • [98]

    Martelanc M, Vovk I, Simonovska B. Determination of three major triterpenoids in epicuticular wax of cabbage (Brassica oleracea L.) by high-performance liquid chromatography with UV and mass spectrometric detection. J Chromatogr A. 2007;1164:145–52.CrossrefPubMedGoogle Scholar

  • [99]

    Bani S, Kaul A, Khan B, Ahmad SF, Suri KA, Gupta BD, et al. Suppression of T lymphocyte activity by lupeol isolated from Crataeva religiosa. Phytother Res. 2006;20:279–87.PubMedCrossrefGoogle Scholar

  • [100]

    Latha RM, Lenin M, Rasool M, Varalakshmi P. A novel derivative pentacyclic triterpene and omega 3 fatty acid. Prost Leukot Essent Fatty Acids. 2001;64:81–5.Google Scholar

  • [101]

    Vasconcelos JF, Teixeira MM, Barbosa-Filho JM, Lúcio AS, Almeida JR, De Queiroz LP, et al. The triterpenoid lupeol attenuates allergic airway inflammation in a murine model. Int Immunopharmacol. 2008;8:1216–21.CrossrefGoogle Scholar

  • [102]

    Sunitha S, Nagaraj M, Varalakshmi P. Hepatoprotective effect of lupeol and lupeol linoleate on tissue antioxidant defence system in cadmiuminduced hepatotoxicity in rats. Fitoterapia. 2001;72:516–23.CrossrefGoogle Scholar

  • [103]

    Nguemfo EL, Dimo T, Dongmo AB, Azebaze AG, Alaoui K, Asongalem AE, et al. Anti-oxidative and anti-inflammatory activities of some isolated constituents from the stem bark of Allanblackia monticola Staner L.C (Guttiferae). Inflammopharmacology. 2009;17:37–41.CrossrefGoogle Scholar

  • [104]

    Sudhahar V, Ashok Kumar S, Varalakshmi P, Sujatha V. Protective effect of lupeol and lupeol linoleate in hypercholesterolemia associated renal damage. Mol Cell Biochem. 2008;317:11–20.CrossrefPubMedGoogle Scholar

  • [105]

    Lima LM, Perazzo FF, Tavares Carvalho JC, Bastos JK. Anti-inflammatory and analgesic activities of the ethanolic extracts from Zanthoxylum riedelianum (Rutaceae) leaves and stem bark. J Pharm Pharmacol. 2007;59:1151–8.PubMedCrossrefGoogle Scholar

  • [106]

    Akihisa T, Yasukawa K, Oinuma H, Kasahara Y, Yamanouchi S, Takido M, et al. Triterpene alcohols from the flowers of compositae and their anti-inflammatory effects. Phytochemistry. 1996;43:1255–60.CrossrefPubMedGoogle Scholar

  • [107]

    Davis RH, DiDonato JJ, Johnson RW, Stewart CB. Aloe vera, ydrocortisone and sterol influence on wound tensile strength and anti-inflammation. J Am Podiatr Med Assoc. 1994;84:614–21.PubMedCrossrefGoogle Scholar

  • [108]

    Ramirez Apan AA, Pérez-Castorena AL, De Vivar AR. Anti-inflammatory constituents of Mortonia greggii Gray. Z Naturforsch [C]. 2004;59:237–43.PubMedCrossrefGoogle Scholar

  • [109]

    Gupta R, Sharma AK, Sharma MC, Dobhal MP, Gupta RS. Evaluation of antidiabetic and antioxidant potential of lupeol in experimental hyperglycaemia. Nat Prod Res. 2012;26:1125–9.CrossrefPubMedGoogle Scholar

  • [110]

    Zhang L, Zhang Y, Zhang L, Yang X, Lv Z. Lupeol, a dietary triterpene, inhibited growth, and induced apoptosis through down-regulation of DR3 in SMMC7721 cells. Cancer Invest. 2009;27:163–70.CrossrefPubMedGoogle Scholar

  • [111]

    Nagaraj M, Sunitha S, Varalakshmi P. Effect of lupeol a pentacyclic triterpene, on the lipid peroxidation and antioxidant status in rat kidney after chronic cadmium exposure. J Appl Toxicol. 2000;20:413–7.PubMedCrossrefGoogle Scholar

  • [112]

    Lambertini E, Lampronti I, Penolazzi L, Khan MT, Ather A, Giorgi G, et al. Expression of estrogen receptor alpha gene in breast cancer cells treated with transcription factor decoy is modulated by Bangladeshi natural plant extracts. Oncol Res. 2005;14:69–79.Google Scholar

  • [113]

    Nigam N, Prasad S, Shukla Y. Preventive effects of lupeol on DMBA induced DNA alkylation damage in mouse skin. Food Chem Toxicol. 2007;45:2331–5.PubMedCrossrefGoogle Scholar

  • [114]

    Saleem M, Afaq F, Adhami VM, Mukhtar H. Lupeol modulates NF-kappa B and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene. 2004;23:5203–14.PubMedCrossrefGoogle Scholar

  • [115]

    Tsai FS, Lin LW, Wu CR. Lupeol and its role in chronic diseases. Adv Exp Med Biol. 2016;929:145–75.PubMedCrossrefGoogle Scholar

  • [116]

    Cordova C, Gutierrez B, Martinez-Garcia C, Martin R, GallegoMunoz P, Hernandez M, et al. Oleanolic acid controls allergic and inflammatory responses in experimental allergic conjunctivitis. Plos One. 2014;9:e91282.CrossrefGoogle Scholar

  • [117]

    Wang Xin, Li Y-L, Wu H, Liu J-Z, Hu J-X, Liao N, et al. Antidiabetic effect of oleanolic acid: a promising use of a traditional pharmacological agent. Phytother Res. 2011;25:1031–40.PubMedCrossrefGoogle Scholar

  • [118]

    Hsu HF, Houng JY, Chang CL, Wu CC, Chang FR, Wu YC. Antioxidant activity and DNA information of Glossogyne tenuifolia. J Agric Food Chem. 2005;53:6117–25.CrossrefPubMedGoogle Scholar

  • [119]

    Matysik G, Wojciak-Kosior M, Paduch R. The influence of Calendulae officinalis flos extracts on cell cultures, and the chromatographic analysis of extracts. J Pharm Biomed Anal. 2005;38:285–92.CrossrefPubMedGoogle Scholar

  • [120]

    Mencherini T, Picerno P, Festa M, Russo P, Capasso A, Aquino R. Triterpenoid constituents from the roots of Paeonia rockii ssp. Rockii J Nat Prod. 2011;74:2116–21.CrossrefGoogle Scholar

  • [121]

    Checker R, Sandur SK, Sharma D, Patwardhan RS, Jayakumar S, Kohli V, et al. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-kB, AP-1 and NF-AT. Plos One. 2012;7:e31318.CrossrefGoogle Scholar

  • [122]

    Tang C, Lu YH, Xie JH, Wang F, Zou JN, Yang JS, et al. Downregulation of survivin and activation of caspase-3 through the PI3K/Akt pathway in ursolic acid-induced HepG2 cell apoptosis. Anticancer Drugs. 2009;20:249–58.CrossrefPubMedGoogle Scholar

  • [123]

    Liu JJ, Nilsson A, Oredsson S, Badmaev V, Duan RD. Keto-and acetyl-keto-boswellic acids inhibit proliferation andinduce apoptosis in Hep G2 cells via a caspase-8 dependent pathway. Int J Mol Med. 2002;10:501–5.Google Scholar

  • [124]

    Yan SL, Huang CY, Wu ST, Yin MC. Oleanolic acid and ursolicacid induce apoptosis in four human liver cancer celllines. Toxicol In Vitro. 2010;24:842–8.CrossrefGoogle Scholar

  • [125]

    Shyu MH, Kao TC, Yen GC. Oleanolic acid and ursolicacid induce apoptosis in HuH7 human hepatocellular carcinomacells through a mitochondrial-dependent pathwayand downregulation of XIAP. J Agric Food Chem. 2010;58:6110–8.CrossrefGoogle Scholar

  • [126]

    Otuki MF, Vieira-Lima F, Malheiros A, Yunes RA, Calixto JB. Topical antiinflammatory effects of the ether extract from Protium kleinii and α-amyrin pentacyclic triterpene. Eur J Pharmacol. 2005;507:253–9.PubMedCrossrefGoogle Scholar

  • [127]

    Medeiros R, Otuki MF, Avellar MCW, Calixto JB. Mechanisms underlying the inhibitory actions of the pentacyclic triterpene α-amyrininthemouseskininflammation induced by phorbol ester 12-O-tetradecanoylphorbol-13acetate. Eur J Pharmacol. 2007;559:227–35.CrossrefGoogle Scholar

  • [128]

    Xiang LP, Wang A, Ye JH. Suppressive effects of tea catechins on breast cancer. Nutrients. 2016;8:458.CrossrefGoogle Scholar

  • [129]

    Slivova V, Zaloga G, DeMichele SJ, Mukerji P, Huang YS, Siddiqui R, et al. Green tea polyphenols modulate secretion of urokinase plasminogen activator (uPA) and inhibit invasive behavior of breast cancer cells. Nutr Cancer. 2005;52:66–73.PubMedCrossrefGoogle Scholar

  • [130]

    Rice-Evans CA, Miller NJ, Paganga G. Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20:933–56.PubMedCrossrefGoogle Scholar

  • [131]

    Bors W, Michel C. Chemistry of the antioxidant effect of polyphenols. Ann N Y Acad Sci. 2002;957:57–69.CrossrefPubMedGoogle Scholar

  • [132]

    Ito H, Kobayashi E, Takamatsu Y, Li SH, Hatano T, Sakagami H, et al. Polyphenols from Eriobotrya japonica and their cytotoxicity against human oral tumor cell lines. Chem Pharm Bull. 2000;48:687–93.PubMedCrossrefGoogle Scholar

  • [133]

    Santos-Buelga C, Scalbert A. Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric. 2000;80:1094–117.CrossrefGoogle Scholar

About the article

Received: 2017-10-03

Accepted: 2018-05-08

Published Online: 2018-06-22


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Journal of Complementary and Integrative Medicine, Volume 16, Issue 1, 20170129, ISSN (Online) 1553-3840, DOI: https://doi.org/10.1515/jcim-2017-0129.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in