Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias


CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

Online
ISSN
1553-3840
See all formats and pricing
More options …

Effect of Morus alba root bark extract on gene-level expression of inflammatory markers in rats subjected to ethanol and cerulein induced pancreatitis– influence of heat shock protein 70

Kavitha Yuvaraj / Arumugam Geetha
Published Online: 2018-10-18 | DOI: https://doi.org/10.1515/jcim-2017-0149

Abstract

Background

Chronic pancreatitis (CP) is a persistent inflammation of the pancreas clinically presented with severe abdominal pain, progressive fibrosis, and loss of exocrine and endocrine functions. Inflammasomes, cytosolic multiprotein complexes which regulate the formation of proinflammatory cytokines, are influenced by various factors including heat shock proteins (HSPs). Morus alba L., or white mulberry root bark is a valued traditional Asian medicine with a diverse array of phytochemicals. The aim of this investigation was to define the modulatory action of methanolic extract of Morus alba root bark (MEMARB) on NLRP3 inflammasome, and HSPs in pancreas subjected to inflammatory insult.

Methods

Pancreatitis was induced in male albino Wistar rats by ethanol (0–36%) and cerulein (20 µg/kg b.wt., i.p.) for 5 weeks with or without MEMARB administration. Serum lipase/amylase (L/A) ratio, oxidative stress index (OSI) and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in the pancreas were evaluated. Levels of serum HSP70 was quantified by ELISA. NF-kappa B, NLRP3-ASC, caspase-1, IL-1β, IL-18, and HSP70 gene expression was quantified by quantitative real-time polymerase chain reaction (qPCR).

Results

L/A ratio and oxidative stress determined in terms of OSI and GSH/GSSG ratio were elevated in pancreatitis-induced rats. The levels were restored in MEMARB co-administered animals. Serum level of HSP70 was increased in pancreatitis-induced animals and dropped significantly in MEMARB co-administrated rats. Pancreatitis-induced group showed increased expression of NF-kappa B, IL-1β, IL-18, caspase-1, NLRP3-ASC and HSP70 mRNA than in MEMARB treated group.

Conclusions

It can be concluded that the M. alba root extract modulates the expression of HSP70 and NLRP3-ASC which might be attributed to its pancreato-protective effect.

Keywords: HSP70; interleukins; Morus alba; NF-kappa B; NLRP3-ASC

References

  • [1]

    Whitcomb DC, Frulloni L, Garg P, Greer JB, Schneider A, Yadav D, et al. Chronic pancreatitis: an international draft consensus proposal for a new mechanistic definition. Pancreatology. 2016;16:218–24.Web of SciencePubMedCrossrefGoogle Scholar

  • [2]

    Kolodecik T, Shugrue C, Ashat M, Thrower EC. Risk factors for pancreatic cancer: underlying mechanisms and potential targets. Front Physiol. 2014;4:415.PubMedGoogle Scholar

  • [3]

    Majumder S, Chari ST. Chronic pancreatitis. Lancet. 2016;387:1957–66.PubMedCrossrefGoogle Scholar

  • [4]

    Van Acker GJ, Weiss E, Steer ML, Perides G. Cause-effect relationships between zymogen activation and other early events in secretagogue-induced acute pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1738–46.CrossrefPubMedGoogle Scholar

  • [5]

    Talukdar R, Sareen A, Zhu H, Yuan Z, Dixit A, Cheema H, et al. Release of cathepsin b in cytosol causes cell death in acute pancreatitis. Gastroenterology. 2016;151:747–58.Web of ScienceCrossrefPubMedGoogle Scholar

  • [6]

    Dawra R, Sah RP, Dudeja V, Rishi L, Talukdar R, Garg P, et al. Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology. 2011;141:2210–17.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [7]

    Hoque R, Malik A, Gorelick F, Mehal W. Sterile inflammatory response in acute pancreatitis. Pancreas. 2012;41:353–57.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [8]

    Habtezion A. Inflammation in acute and chronic pancreatitis. Curr Opin Gastroenterol. 2015;31:395–99.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [9]

    Hoque R, Mehal WZ. Inflammasomes in pancreatic physiology and disease. Am J Physiol Gastrointest Liver Physiol. 2015;308:G643–51.PubMedCrossrefGoogle Scholar

  • [10]

    Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015;4:296–307.CrossrefWeb of SciencePubMedGoogle Scholar

  • [11]

    Dawra RK, Dudeja V, Saluja AK. Heat shock proteins as modulators of pancreatitis. Pancreapedia Exocrine Pancreas Knowl Base. 2016. DOI: CrossrefGoogle Scholar

  • [12]

    Kollar P, Bárta T, Hošek J, Souček K, Závalová VM, Artinian S, et al. Prenylated flavonoids from Morus alba L. cause inhibition of G1/S transition in THP-1 human leukemia cells and prevent the lipopolysaccharide-induced inflammatory response. Evid Based Complement Alternat Med. 2013;2013:350519–31.Google Scholar

  • [13]

    Fariss MW, Reed DJ. High-performance liquid chromatography of thiols and disulfides: dinitrophenol derivatives. Methods Enzymol. 1987;143:101–09.CrossrefPubMedGoogle Scholar

  • [14]

    Harma M, Harma M, Erel O. Increased oxidative stress in patients with hydatidiform mole. Swiss Med Wkly. 2003;133:563–66.PubMedGoogle Scholar

  • [15]

    Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci. 1993;84:407–12.CrossrefPubMedGoogle Scholar

  • [16]

    Wagner H, Bauer R, Melchart D, Xiao PG, Staudinger A. Chromatographic fingerprint analysis of herbal medicines. Berlin, Germany: Springer, 2011.Google Scholar

  • [17]

    Venkatesh Kumar R, Chauhan S. Mulberry: life enhancer. J Med Plant Res. 2008;2:271–78.Google Scholar

  • [18]

    Vonlaufen A, Wilson JS, Pirola RC, Apte MV. Role of alcohol metabolism in chronic pancreatitis. Alcohol Res Health. 2007;30:48–54.PubMedGoogle Scholar

  • [19]

    Deng X, Wang L, Elm MS, Gabazadeh D, Diorio GJ, Eagon PK, et al. Chronic alcohol consumption accelerates fibrosis in response to cerulein-induced pancreatitis in rats. Am J Pathol. 2005;166:93–106.PubMedCrossrefGoogle Scholar

  • [20]

    Kim H. Cerulein pancreatitis: oxidativestress, inflammation, and apoptosis. Gut Liver. 2008;2:74–80.CrossrefGoogle Scholar

  • [21]

    Frulloni L, Patrizi F, Bernardoni L, Cavallini G. Pancreatic hyperenzymemia: clinical significance and diagnostic approach. JOP. 2005;6:536–41.PubMedGoogle Scholar

  • [22]

    Devanath A, Kumari J, Joe J, Peter S, Rajan S, Sabu L, et al. Usefulness of lipase/amylase ratio in acute pancreatitis in South Indian population. Indian J Clin Biochem. 2009;24:361–65.CrossrefGoogle Scholar

  • [23]

    Shahedi K, Pandol SJ, Hu R. Oxidative stress and alcoholic pancreatitis. J Gastroenterol Hepatol Res. 2013;2:335–42.Google Scholar

  • [24]

    Wittel UA, Bachem M, Siech M. Oxygen radical production precedes alcohol-induced acute pancreatitis in rats. Pancreas. 2003;26:e74–80.CrossrefPubMedGoogle Scholar

  • [25]

    Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D. Cell death and DAMPs in acute pancreatitis. Mol Med. 2014;20:466–77.Web of SciencePubMedGoogle Scholar

  • [26]

    Rakonczay Z, Hegyi P, Takacs T, McCarroll J, Saluja AK. The role of NF-κB activation in the pathogenesis of acute pancreatitis. Gut. 2008;57:259–67.Web of ScienceCrossrefPubMedGoogle Scholar

  • [27]

    Chen X, Ji B, Han B, Ernst SA, Simeone D, Logsdon CD. NF-κB activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology. 2002;122:448–57.CrossrefPubMedGoogle Scholar

  • [28]

    Compan V, Martín-Sánchez F, Baroja-Mazo A, López-Castejón G, Gomez AI, Verkhratsky A, et al. Apoptosis-associated speck-like protein containing a CARD forms specks but does not activate caspase-1 in the absence of NLRP3 during macrophage swelling. J Immunol. 2015;194:1261–73.CrossrefWeb of SciencePubMedGoogle Scholar

  • [29]

    HošEk J, Bartos M, Chudík S, Dall’Acqua S, Innocenti G, Kartal M, et al. Natural compound cudraflavone B shows promising anti-inflammatory properties in vitro. J Nat Prod. 2011;74:614–19.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [30]

    Zelová H, Hanáková Z, ČErmáková Z, ŠMejkal K, Dalĺ Acqua S, Babula P, et al. Evaluation of anti-inflammatory activity of prenylated substances isolated from Morus albaMorus nigra. J Nat Prod. 2014;77:1297–303.PubMedCrossrefGoogle Scholar

  • [31]

    Ethridge RT, Ehlers RA, Hellmich MR, Rajaraman S, Evers BM. Acute pancreatitis results in induction of heat shock proteins 70 and 27 and heat shock factor-1. Pancreas. 2000;21:248–56.CrossrefPubMedGoogle Scholar

  • [32]

    Hosokawa N, Hirayoshi K, Kudo H, Takechi H, Aoike A, Kawai K, et al. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol Cell Biol. 1992;12:3490–98.PubMedCrossrefGoogle Scholar

  • [33]

    Phillips PA, Dudeja V, McCarroll JA, Borja-Cacho D, Dawra RK, Grizzle WE, et al. Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res. 2007;67:9407–16.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [34]

    Sendler M, Mayerle J, Lerch MM. Necrosis, apoptosis, necroptosis, pyroptosis: it matters how acinar cells die during pancreatitis. Cell Mol Gastroenterol Hepatol. 2016;2:407–08.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [35]

    Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol. 2007;81:15–27.Web of SciencePubMedCrossrefGoogle Scholar

About the article

Received: 2017-11-07

Accepted: 2018-07-17

Published Online: 2018-10-18


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Journal of Complementary and Integrative Medicine, 20170149, ISSN (Online) 1553-3840, DOI: https://doi.org/10.1515/jcim-2017-0149.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in