Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias


CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

Online
ISSN
1553-3840
See all formats and pricing
More options …

Ethanolic extract of Erythrina velutina Willd ameliorate schizophrenia-like behavior induced by ketamine in mice

Naiara Coelho Ximenes
  • Department of Physiology and Pharmacology, Federal University of Ceara, Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Manuel Alves Dos Santos Júnior
  • Department of Physiology and Pharmacology, Federal University of Ceara, Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Germana Silva Vasconcelos
  • Department of Physiology and Pharmacology, Federal University of Ceara, Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kátia Cilene Ferreira Dias
  • Department of Physiology and Pharmacology, Federal University of Ceara, Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mércia Marques Jucá
  • Department of Physiology and Pharmacology, Federal University of Ceara, Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aline Holanda Silva
  • Department of Pharmacy, Federal University of Ceará, Capitão Francisco Pedro Street 1210, Fortaleza, CE CEP: 60430-170, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luzia Kalyne Almeida Moreira Leal
  • Department of Pharmacy, Federal University of Ceará, Capitão Francisco Pedro Street 1210, Fortaleza, CE CEP: 60430-170, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Glauce Socorro Barros Viana
  • Department of Physiology and Pharmacology, Federal University of Ceara, Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francisca Cléa Florenço de Sousa
  • Department of Physiology and Pharmacology, Federal University of Ceara, Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Silvânia Maria Mendes Vasconcelos
  • Corresponding author
  • Department of Physiology and Pharmacology, Federal University of Ceara, Cel. Nunes de Melo 1127, CEP 60431-270, Fortaleza, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-12 | DOI: https://doi.org/10.1515/jcim-2018-0038

Abstract

Background

Schizophrenia is a chronic mental disorder, characterized by positive, negative and cognitive symptoms. In general, several plants have shown activity in diseases related to the central nervous system (e.g., Erythrina velutina (EEEV), also known as “mulungu”). For this reason, we aimed to investigate the effects of standardized ethanol extract obtained from the stem bark of EEEV on the schizophrenia-like behaviors induced by ketamine (KET) administration.

Methods

Swiss mice were treated with KET (20 mg/kg, i.p.) or saline for 14 days. In addition, from 8th to 14th days, saline, EEEV (200 or 400 mg/kg, p.o.) or olanzapine (OLAN 2 mg/kg, p.o.) were associated to the protocol. On the 14th day of treatment, schizophrenia-like symptoms were evaluated by the prepulse inhibition of the startle reflex (PPI), locomotor activity evaluated by the open field test (OFT), spatial recognition memory evaluated by the Y-maze task and social interaction test (SIT).

Results

KET has caused deficits in PPI, and it has also has caused hyperlocomotion in OFT and deficits in SIT as compared to control. EEEV in both doses used, reversed behavioral changes induced by KET, likewise results obtained with the administration of OLAN.

Conclusions

Taken together, the results demonstrate that the standard extract of EEEV was able to revert schizophrenia-like symptoms, due to the administration in repeated doses of ketamine. Thus, our findings lead to a new perspective for the use of EEEV an interesting alternative for drug discovery in schizophrenia.

Keywords: Erythrina velutina; ketamine; olanzapine; schizophrenia

References

  • [1]

    Harvey CA, Curson DA, Pantelis C, Taylor J, Barnes TRE. Four behavioural syndromes of schizophrenia. Br J Psychiatry. 1996;168:562–70.PubMedCrossrefGoogle Scholar

  • [2]

    Larson MK, Walker EF, Compton MT. Early signs, diagnosis and therapeutics of the prodromal phase of schizophrenia and related psychotic disorders. Expert Rev Neurother. 2010;10:1347–59.Web of ScienceCrossrefPubMedGoogle Scholar

  • [3]

    Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol. 2010;90:285–326.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [4]

    Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF, Möller HJ, et al. Diretrizes da Federação Mundial das Sociedades de Psiquiatria Biológica para o tratamento biológico da esquizofrenia parte 1: tratamento agudo. Revista de Psiquiatria Clinica. 2006;33:7–64.Google Scholar

  • [5]

    Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, ‘Just the Facts’ 5. Treatment and prevention Past, present, and future. Schizophr Res. 2010;122:1–23.Web of ScienceCrossrefGoogle Scholar

  • [6]

    Lima EBC, de Sousa CNS, Vasconcelos GS, Meneses LN, e Silva Pereira YF, Ximenes NC, et al. Antidepressant, antioxidant and neurotrophic properties of the standardized extract of Cocos nucifera husk fiber in mice. J Nat Med. 2016;70:510–21.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [7]

    Lima EBC, de Sousa CNS, Meneses LN, e Silva Pereira YF, Matos NCB, de Freitas RB, et al. Involvement of monoaminergic systems in anxiolytic and antidepressive activities of the standardized extract of Cocos nucifera L. J Nat Med. 2017;71:227–37.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [8]

    Zhang Y, Li Q, Li X, Wan H–Y. Erythrina variegata extract exerts osteoprotective effects by suppression of the process of bone resorption. Br J Nutr. 2010;104:965–71.Web of ScienceCrossrefPubMedGoogle Scholar

  • [9]

    Chukwujekwu JC, Van Heerden FR, Van Staden J. Antibacterial activity of flavonoids from the stem bark of Erythrina caffra thunb. Phyther Res. 2011;25:46–8.CrossrefGoogle Scholar

  • [10]

    Nguyen PH, Le TVT, Thuong PT, Dao TT, Ndinteh DT, Mbafor JT, et al. Cytotoxic and PTP1B inhibitory activities from Erythrina abyssinica. Bioorganic Med Chem Lett. 2009;19:6745–9.CrossrefWeb of ScienceGoogle Scholar

  • [11]

    Carvalho ACB, Balbino EE, Maciel A, Perfeito JPS. Situação do registro de medicamentos fitoter??picos no Brasil. Brazilian J Pharmacogn. 2008;18:314–9.CrossrefGoogle Scholar

  • [12]

    Lorenzi H, Matos FJA. Plantas medicinais no Brasil: nativas e exóticas cultivadas. Nova Odessa: Instituto Plantarum, 2008;544.Google Scholar

  • [13]

    Sarris J, McIntyre E, Camfield DA. Plant-based medicines for anxiety disorders, Part 1: a review of preclinical studies. CNS Drugs. 2013;27:207–19.Web of SciencePubMedCrossrefGoogle Scholar

  • [14]

    Carvalho ACCS, Almeida DS, Melo MGD, Cavalcanti SCH, Marçal RM. Evidence of the mechanism of action of Erythrina velutina Willd (Fabaceae) leaves aqueous extract. J Ethnopharmacol. 2009;122:374–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [15]

    Vasconcelos SM, Macedo DS, de Melo CT, Paiva Monteiro a, Rodrigues a C, Silveira ER, et al. Central activity of hydroalcoholic extracts from Erythrina velutina and Erythrina mulungu in mice. J Pharm Pharmacol. 2004;56:389–93.CrossrefPubMedGoogle Scholar

  • [16]

    Rodrigues FTS, de Sousa CNS, Ximenes NC, Almeida AB, Cabral LM, Patrocinio CFV, et al. Effects of standard ethanolic extract from Erythrina velutina in acute cerebral ischemia in mice. Biomed Pharmacother. 2017;96:1230–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • [17]

    Silva AH, Fonseca FN, Pimenta ATA, Lima MS, Silveira ER, Viana GSB, et al. Pharmacognostical analysis and protective effect of standardized extract and rizonic acid from Erythrina velutina against 6-hydroxydopamine-induced neurotoxicity in Sh-Sy5Y cells. Pharmacogn Mag. 2016;12:307–12.PubMedWeb of ScienceGoogle Scholar

  • [18]

    Vasconcelos SMM, Lima NM, Sales GTM, Cunha GMA, Aguiar LM V, Silveira ER, et al. Anticonvulsant activity of hydroalcoholic extracts from Erythrina velutina and Erythrina mulungu. J Ethnopharmacol. 2007;110:271–4.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [19]

    Raupp IM, Sereniki A, Virtuoso S, Ghislandi C, Cavalcanti e Silva EL, Trebien HA, et al. Anxiolytic-like effect of chronic treatment with Erythrina velutina extract in the elevated plus-maze test. J Ethnopharmacol. 2008;118:295–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [20]

    Onusic GM, Nogueira RL, Pereira AMS, Viana MB. Effect of acute treatment with a water-alcohol extract of Erythrina mulungu on anxiety-related responses in rats. Brazilian J Med Biol Res. 2002;35:473–7.CrossrefGoogle Scholar

  • [21]

    Ribeiro MD, Onusic GM, Poltronieri SC, Viana MB. Effect of Erythrina velutina and Erythrina mulungu in rats submitted to animal models of anxiety and depression. Brazilian J Med Biol Res. 2006;39:263–70.CrossrefGoogle Scholar

  • [22]

    Vasconcelos SMM, Lima NM, de Lucena LS, Praxedes Rodrigues AC, Silveira ER, Torres Aguiar CC et al. Behavioral study with Erythrina velutina fractions. Asian Pac J Trop Med. 2009;2:30–3.Google Scholar

  • [23]

    Da-Cunha EVL, Dias C, Barbosa–Filho JM, Gray AI. Eryvellutinone, an isoflavanone from the stem bark of Erythrina vellutina. Phytochemistry. 1996;43:1371–3.CrossrefGoogle Scholar

  • [24]

    Rabelo LA, De Fátima Agra M, Da-Cunha EVL, Da Silva MS, Barbosa–Filho JM. Homohesperetin and phaseollidin from Erythrina velutina. Biochem Syst Ecol. 2001;29:543–4.PubMedCrossrefGoogle Scholar

  • [25]

    Pelletier AL, Mittal VA. Negative symptom measurement in individuals at-risk for psychosis. Psychiatry Res. 2013;205:181–2.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [26]

    Balhara YPS, Verma R. Schizophrenia and suicide. East Asian Archives Psychiatry. 2012;22:126–33.Google Scholar

  • [27]

    Byrne P. Managing the acute psychotic episode. BMJ. 2007;334:686–92.PubMedCrossrefGoogle Scholar

  • [28]

    Monte AS, de Souza GC, McIntyre RS, Soczynska JK, dos Santos JV, Cordeiro RC, et al. Prevention and reversal of ketamine-induced schizophrenia related behavior by minocycline in mice: possible involvement of antioxidant and nitrergic pathways. J Psychopharmacol. 2013;27:1032–43.CrossrefWeb of SciencePubMedGoogle Scholar

  • [29]

    Deroza PF, Ghedim F V, Heylmann AS, de Luca RD, Budni J, Souza RP, et al. Effect of cigarette smoke exposure in the behavioral changes induced by ketamine. Schizophr Res. 2012;141:104–5.Web of ScienceCrossrefPubMedGoogle Scholar

  • [30]

    Ninan I, Kulkarni SK. Differential effects of olanzapine at dopamine D1 and D2 receptors in dopamine depleted animals. Psychopharmacology (Berl). 1999;142:175–81.PubMedCrossrefGoogle Scholar

  • [31]

    Archer J. Tests for emotionality in rats and mice: a review. Animal Behaviour. 1973;21:205–35.PubMedCrossrefGoogle Scholar

  • [32]

    Levin R, Calzavara MB, Santos CM, Medrano WA, Niigaki ST, Abílio VC. Spontaneously Hypertensive Rats (SHR) present deficits in prepulse inhibition of startle specifically reverted by clozapine. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:1748–52.PubMedCrossrefGoogle Scholar

  • [33]

    Yamada K, Noda Y, Hasegawa T, Komori Y, Nikai T, Sugihara H, et al. The role of nitric oxide in dizocilpine-induced impairment of spontaneous alternation behavior in mice. J Pharmacol Exp Ther. 1996;276:460–6.PubMedGoogle Scholar

  • [34]

    Radyushkin K, Hammerschmidt K, Boretius S, Varoqueaux F, El-Kordi A, Ronnenberg A, et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes, Brain Behav. 2009;8:416–25.CrossrefWeb of ScienceGoogle Scholar

  • [35]

    Thaker GK. Schizophrenia endophenotypes as treatment targets. Expert Opin Ther Targets. 2007;11:1189–206.CrossrefWeb of SciencePubMedGoogle Scholar

  • [36]

    Van Den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophrenia Bulletin. 2010;36:246–70.CrossrefWeb of SciencePubMedGoogle Scholar

  • [37]

    Vasconcelos GS, Ximenes NC, de Sousa CNS, Oliveira T de Q, Lima LLL, de Lucena DF, et al. Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: participation of antioxidant, nitrergic and neurotrophic mechanisms. Schizophr Res. 2015;165:163–70.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [38]

    Braff DL, Freedman R, Schork NJ, Gottesman II. Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr Bull. 2007;33:21–32.Web of SciencePubMedGoogle Scholar

  • [39]

    Powell SB, Zhou X, Geyer MA. Prepulse inhibition and genetic mouse models of schizophrenia. Behav Brain Res. 2009;204:282–94.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [40]

    Desbonnet L, Waddington JL, O'Tuathaigh CMP. Mutant models for genes associated with schizophrenia. Biochem Soc Trans. 2009;37:308–12.Web of ScienceCrossrefPubMedGoogle Scholar

  • [41]

    Lysaker PH, Erikson M, Macapagal KR, Tunze C, Gilmore E, Ringer JM. Development of personal narratives as a mediator of the impact of deficits in social cognition and social withdrawal on negative symptoms in Schizophrenia. J Nerv Ment Dis. 2012;200:290–5.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [42]

    Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M. Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol. 2009;19:220–30.CrossrefWeb of SciencePubMedGoogle Scholar

  • [43]

    Bitanihirwe BKY, Woo TUW. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev. 2011;35:878–93.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [44]

    Bošković M, Vovk T, Kores Plesničar B, Grabnar I. Oxidative stress in schizophrenia. Curr Neuropharmacol. 2011;9:301–12.CrossrefPubMedGoogle Scholar

  • [45]

    Ciobica A, Padurariu M, Dobrin I, Stefanescu C, Dobrin R. Oxidative stress in schizophrenia – Focusing on the main markers. Psychiatria Danubina. 2011;23:237–45.PubMedGoogle Scholar

  • [46]

    O'Donnell P. Cortical interneurons, immune factors and oxidative stress as early targets for schizophrenia. Eur J Neurosci. 2012;35:1866–70.Web of ScienceCrossrefPubMedGoogle Scholar

  • [47]

    Sullivan EM, O'Donnell P. Inhibitory interneurons, oxidative stress, and schizophrenia. Schizophr Bull. 2012;38:373–6.Web of ScienceCrossrefPubMedGoogle Scholar

  • [48]

    Wu JQ, Kosten TR, Zhang XY. Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;46:200–6.CrossrefWeb of ScienceGoogle Scholar

  • [49]

    Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in Schizophrenia: an integrative view. Antioxid Redox Signal. 2011;15:2011–35.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [50]

    Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995;19:227–50.CrossrefPubMedGoogle Scholar

About the article

Received: 2018-04-11

Accepted: 2018-09-12

Published Online: 2018-10-12


Conflict of interest: None declared.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Funcap, CAPES and CNPq.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: All funding organizations played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Journal of Complementary and Integrative Medicine, 20180038, ISSN (Online) 1553-3840, DOI: https://doi.org/10.1515/jcim-2018-0038.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in