Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

See all formats and pricing
More options …

In vitro and in vivo toxicity assessment of biologically synthesized silver nanoparticles from Elaeodendron croceum

S. W. OdeyemiORCID iD: https://orcid.org/0000-0002-7580-6709 / J. De La Mare
  • The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P. O. Box 94, Grahamstown, 6140, South Africa
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. L. Edkins
  • The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P. O. Box 94, Grahamstown, 6140, South Africa
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. J. Afolayan
  • MPED Research Niche Area, Department of Botany, University of Fort Hare, Alice, 5700, South Africa
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-02-07 | DOI: https://doi.org/10.1515/jcim-2018-0184



The cytotoxic properties of nanoparticles have attracted a great deal of attention in the field of nanoscience and nanotechnology due to their small size and ability to penetrate cellular membranes.


The silver nanoparticles were synthesized using Elaeodendron croceum stem bark and characterized. The oral acute toxicity studies were carried out by administration of 500, 1000, 2000 mg/kg body weight to Wister rats in respective groups. An in vitro cytotoxicity assay was evaluated in MDA-MB-231 breast cancer cells using the WST-1 Cell Proliferation assay. The percentage of cell viability after treatment with aqueous extracts of Elaeodendron croceum (ECE) and Elaeodendron croceum silver nanoparticles (ECAgNPs) was compared with that of paclitaxel.


The in vivo studies revealed that the LD50 was higher than 2000 mg/kg and there was no significant difference (p>0.05) between the treatment groups compared with the control group for mean organ-to-body weight ratio except in the liver and in all hematological parameters except WBC and hematocrit. Similarly, there was no significant difference (p>0.05) for serum electrolytes (Na+, Mg2+ K+, Cl, and Ca2+), total protein, urea, ɣ-glutamyl transferase (GGT), Aspartate aminotransferase (AST), Alkaline phosphatase (ALP), Alanine aminotransferase (ALT), albumin, total and conjugated bilirubin between the treatment and the control group. However, there were changes in creatinine, urea, and cholesterol. In the in vitro assays, ECE and ECAgNPs showed IC50 values of 70.87±2.99 and 138.8±3.98 µg/mL respectively against MDA-MB-231 cells compared to paclitaxel, which showed an IC50 value of 80 ng/mL.


The results showed that the LD50 of the ECE and ECAgNPs in Wister rats was determined to be greater than 2000 mg/kg body weight. The aqueous extract also showed more cytotoxic than the ECAgNPs suggesting that the toxic compounds in aqueous extract were involved in the capping of the AgNPs.

Keywords: anti-cancer; cytotoxicity; Elaeodendron croceum; medicinal plants; silver nanoparticles


  • [1]

    Samberg M, Monteiro-Riviere N. Silver nanoparticles in biomedical applications. Nanotoxicology [Internet], 2nd ed. Florida, United States: CRC Press. Available from 2014:405–22.Google Scholar

  • [2]

    Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int [Internet]. 2013;2013:535796. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23936814. [Available 2017 Sep 7].

  • [3]

    Liu H, Liu Y, Wang Z, He P. Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology [Internet]. 2010;21:105707. Available from: http://stacks.iop.org/0957-4484/21/i=10/a=105707?key=crossref.60cfc7a74a038520bb6b13cce39b4c82.Crossref

  • [4]

    Samberg ME, Oldenburg SJ, Monteiro-Riviere NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect [Internet]. 2009;118:407–13. Available from: http://ehp.niehs.nih.gov/0901398.

  • [5]

    Odeyemi SW, Ajayi EO, Otunola GA. The characterisation and biological activities of silver nanoparticles biosynthesized from the aqueous extracts of Elaeodendron croceum stem bark and leaves. Medicinal plants for economic development. Johannesburg: Society for Medicinal Plants and Economic Development, 2016 Medicinal Plants and Economic Development, University of Fort HareGoogle Scholar

  • [6]

    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin [Internet]. 2011;61:69–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21296855. [Available 2017 Oct 23].Crossref

  • [7]

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin [Internet]. 2016;66:7–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26742998. [Available 2017 Oct 23].Crossref

  • [8]

    Ferlay J, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, et al. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide [Internet]. Lyon: International Agency for Research on Cancer, 2013. Available from: http://globocan.iarc.fr/Default.aspx.

  • [9]

    Demain AL, Vaishnav P. Natural products for cancer chemotherapy. Microb Biotechnol [Internet]. 2011;4:687–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21375717.Crossref

  • [10]

    Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: an updated review. Int J Pharm Investig [Internet]. 2012;2:2–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23071954.Crossref

  • [11]

    Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci [Internet]. 2014;9:385–406. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26339255. [Available 2017 Sep 7].

  • [12]

    Otunola GA, Afolayan AJ, Ajayi EO, Odeyemi SW. Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of allium sativum, zingiber officinale, and capsicum frutescens. Pharmacogn Mag [Internet]. 2017;13:S201–8. http://www.ncbi.nlm.nih.gov/pubmed/28808381%0A http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5538155. Available from.Crossref

  • [13]

    Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from morganella sp.: towards understanding biochemical synthesis mechanism. Chem Bio Chem [Internet]. 2008;9:1415–22. Available from: DOI: .CrossrefGoogle Scholar

  • [14]

    Pugazhenthiran N, Anandan S, Kathiravan G, Udaya Prakash NK, Crawford S, Ashokkumar M. Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanoparticle Res [Internet]. 2009;11:1811–15. Available from: http://link.springer.com/10.1007/s11051-009-9621-2.Crossref

  • [15]

    Samberg ME, Monteiro-Riviere NA. In vitro and in vivo toxicity of silver nanoparticles. Bhushan B,Dordrecht (eds.). Encyclopedia of nanotechnology. Netherlands: Springer Netherlands, 2012:1069–77.Google Scholar

  • [16]

    Yelani T, Hussein AA, Meyer JJM. Isolation and identification of poisonous triterpenoids from Elaeodendron croceum. Nat Prod Res [Internet]. 2010;24:1418–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20234972. [Available 2016 Sep 27].Crossref

  • [17]

    Odeyemi SW, Afolayan AJ. Biological activities and phytochemical screening of Elaeodendron croceum (Thunb.) Dc. Leaves and stem barks extracts. Int J Phytomedicine. 2017;9:566–75.CrossrefGoogle Scholar

  • [18]

    Elisha IL, Dzoyem J-P, Botha FS, Eloff JN. The efficacy and safety of nine South African medicinal plants in controlling Bacillus anthracis Sterne vaccine strain. BMC Complement Altern Med [Internet]. 2015;16:5. http://www.biomedcentral.com/1472-6882/16/5. Available from.Crossref

  • [19]

    Oladiji A, Yakubu M, Odeyemi S, Oyegoke R. Effects of aqueous extract of blighia sapida leaves in alloxan-induced diabetic rats. Niger J Biochem Mol Biol. 2013;28:11–21.Google Scholar

  • [20]

    Odeyemi SW, Afolayan AJ. Characterization and cytotoxicity evaluation of biologically synthesized silver nanoparticles from albuca setosa aqueous bulb extract. Int J Nanosci [Internet]. 2018;17:1850023. Available from: https://www.worldscientific.com/doi/abs/10.1142/S0219581X18500230. [Available 2018 May 12].

  • [21]

    Kulkarni N, Muddapur U. Biosynthesis of metal nanoparticles: a review. J Nanotechnol [Internet]. 2014;2014:1–8. http://www.hindawi.com/journals/jnt/2014/510246/. Available from.Crossref

  • [22]

    Logeswari P, Silambarasan S, Abraham J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc [Internet]. 2015;19:311–17. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1319610312000506.Crossref

  • [23]

    Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res [Internet]. 2016;7:17–28. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2090123215000314. [Available 2017 Jul 6].Crossref

  • [24]

    Ajayi E, Odeyemi S, Otunola G, Afolayan A. Characterization and biological activities of silver nanoparticles synthesized from stems of Sarcocephalus latifolius (Sm) E.A. Bruce and Massularia acuminata (G. Don) Bullock ex Hoyl. (Rubiaceae). Asian J Chem. 2017;29:1240–48.Google Scholar

  • [25]

    Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T. An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci [Internet]. 2011;73:1417–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21712637.Crossref

  • [26]

    Khalifa K, Hamouda R, Hanafy D, Hamza A. In vitro antitumor activity of silver nanoparticles Biosynthesized by marine algae. Dig J Nanomater Biostructures. 2016;11:213–21.Google Scholar

  • [27]

    Appidi JR, Yakubu MT, Grierson DS, Afolayan AJ. Toxicological evaluation of aqueous extracts of Hermannia incana Cav. leaves in male Wistar rats. African J Biotechnol. 2009;8:2016–20.Google Scholar

  • [28]

    Schmidt BM, Ilic N, Poulev A, Raskin I. Toxicological evaluation of a chicory root extract. Food Chem Toxicol [Internet]. 2007;45:1131–39. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0278691507000075.Crossref

  • [29]

    Ashafa AOT, Orekoya LO, Yakubu MT. Toxicity profile of ethanolic extract of Azadirachta indica stem bark in male Wistar rats. Asian Pac J Trop Biomed [Internet]. 2012;2:811–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23569852. [Available 2017 Sep 13].Crossref

  • [30]

    Kifayatullah M, Mustafa MS, Sengupta P, Sarker MMR, Das A, Das SK. Evaluation of the acute and sub-acute toxicity of the ethanolic extract of Pericampylus glaucus (Lam.) Merr. in BALB/c mice. J Acute Dis [Internet]. 2015;4:309–15. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2221618915000517.Crossref

  • [31]

    Jagannathan-Bogdan M, Zon LI. Hematopoiesis. Development [Internet]. 2013;140:2463–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23715539.Crossref

  • [32]

    Yakubu M, Akanji M, Oladiji A. Hematological evaluation in male albino rats following chronic administration of aqueous extract of Fadogia agrestis stem. Pharmacogn Mag. 2007;3:34–38.Google Scholar

  • [33]

    Ashafa AOT, Sunmonu T, Afolayan A. Effects of leaf and berry extracts of Phytolacca dioica L. on haematological and weight parameters of Wistar rats. African J Pharm Pharmacol [Internet]. 2011;5:150–54. Available from: http://academicjournals.org/journal/AJPP/article-abstract/DCFBECD29232.Crossref

  • [34]

    Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AAK, Vernekar SN. Markers of renal function tests. N Am J Med Sci [Internet]. 2010;2:170–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22624135.

  • [35]

    Radhakrishnan M, Ramesh S, Elangomathavan R, Patharajan S. Acute toxicity on the ethanolic fruit extracts of Morinda sp In Wistar albino rats. Int J Res Pharm Sci. 2015;6:44–52.Google Scholar

  • [36]

    Crook MA. Liver disorders and gallstones. In: Arnold H, editor(s). Clinical chemistry and metabolic medicine, London, UK: Hodder Arnold. 8th ed. 2012:252–69. Hodder Arnold, London, UK.Google Scholar

  • [37]

    Yakubu M, Akanji M, Oladiji A. Alterations in serum lipid profile of male rats by oral administration of aqueous extract of Fadogia agrestis stem. Res J Med Plant. 2008;2:66–73.CrossrefGoogle Scholar

About the article

Received: 2018-09-28

Accepted: 2018-11-09

Published Online: 2019-02-07

Author contributions: SWO conducted the in vivo experiments and wrote the manuscript, AJA provided the reagents and funding for the experiment. JdlM and ALE conducted the cytotoxicity testing in the MDA-MB-231 cell line. All authors have read and approved the manuscript.

Research funding: The authors will like to appreciate Govan Mbeki Research and Development Center (GMRDC), University of Fort Hare for funding this work, Grant No. C341

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Journal of Complementary and Integrative Medicine, 20180184, ISSN (Online) 1553-3840, DOI: https://doi.org/10.1515/jcim-2018-0184.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in