Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

See all formats and pricing
More options …

Effects of zinc supplementation on oxidant/antioxidant and lipids status of pesticides sprayers

Amal Saad-Hussein / Khadiga S Ibrahim
  • Corresponding author
  • Environmental and Occupational Medicine Department, National Research Centre, 33 Bohouth St., Dokki, Giza, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohgah Sh Abdalla / Hatem A El-Mezayen / Nehal F A Osman
Published Online: 2019-08-15 | DOI: https://doi.org/10.1515/jcim-2019-0001



Excess exposure to pesticides induces oxidative stress and causes alteration in the lipid profile


The study aimed to evaluate the effects of Zinc (Zn) supplementation on the oxidant/antioxidant and lipid status in pesticide sprayers.


Forty pesticide sprayers were included in the study. Blood lipids, malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD), and Zn were estimated; before and after Zn supplementation.


Statistical analysis revealed that after Zn supplementation, total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL), very low density lipoprotein (VLDL), and MDA were significantly decreased. However, there was a significant increase in the high density lipoprotein (HDL), SOD, GPx, and Zn levels. After Zn supplementation, significant inverse correlations were detected between the Zn and the levels of MDA, TG, and VLDL, while positive correlation between Zn and the levels of HDL and TC.


Zn supplementation improves the oxidative/antioxidants and lipid status in pesticide sprayers.

Keywords: malondialdehyde; pesticide sprayers; serum lipids; superoxide dismutase; zinc supplementation


  • [1]

    Mossa AH, Heikal TM, Mohafrash SM. Lipid peroxidation and oxidative stress in rat erythrocytes induced by aspirin and diazinon: the protective role of selenium. Asian Pac J Trop Biomed 2014;4:S603–9.CrossrefGoogle Scholar

  • [2]

    Mecdad AA, Ahmed MH, El-Halwagy ME, Afify MM. A study on oxidative stress biomarkers and immunomodulatory effects of pesticides in pesticide-sprayers. Egypt J Foren Sci 2011;1:93–8.Google Scholar

  • [3]

    Kalender S, Kalender Y, Ogutcu A, Uzunhisarikli M, Durak D, Anikgoz F. Endosulfan-induced cardiotoxicity and free radical metabolism in rats: the protective effect of vitamin E. Toxicol 2004;202:227–35.CrossrefGoogle Scholar

  • [4]

    Verma RS, Srivastava N. Effect of chlorpyrifos on thiobarbituric acid reactive substances, scavenging enzymes and glutathione in rat tissues. Indian J Biochem Biophys 2003;40:423–8.PubMedGoogle Scholar

  • [5]

    Attia AM, Nasr H. Dimethoate-induced changes in biochemical parameters of experimental rat serum and its neutralization by black seed (Nigella sativa) oil. Slovak J Anim Sci 2009;42:87–94.Google Scholar

  • [6]

    Bano M, Bhatt DK. Ameliorative effect of combination of vitaminE,vitaminCαlipic acid and stilbene and resveratrol on lindane induced toxicity in mice olfactory lobe and cerebrum. Indian J Exp Biol 2010;48:150–8.Google Scholar

  • [7]

    Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2007;2:219–36.PubMedGoogle Scholar

  • [8]

    Ambali SF, Abubakar AT, Shittu M, Yaqub LS, Anafi SB, Abdullahi A. Chlorpyrifos-induced alteration of hematological parameters in wistar rats: ameliorative effect of zinc. Res J Environ Toxicol 2010;4:55–66.CrossrefGoogle Scholar

  • [9]

    Banerjee AK, Joshi VR, Maradi R, Mallick AK. Effect of altered levels of micronutrients on lipid parameters in thyroid dysfunction. IJABPT 2011;2:235–9.Google Scholar

  • [10]

    Abdalla MS, Saad-Hussein A, Ibrahim KS, El-mezayen HA, Osman NF. Effects of smoking on the oxidant/antioxidant balance and the blood lipids in pesticides sprayers. Toxicol Ind Health 2015;31:173–8.CrossrefPubMedGoogle Scholar

  • [11]

    Mansour SA, Mossa AH. Oxidative damage, biochemical and histopathological alterations in rats exposed to chlorpyrifos and the antioxidant role of zinc. Pestic Biochem Physiol 2010;96:14–23.CrossrefWeb of ScienceGoogle Scholar

  • [12]

    Abbassy M, Marzouk M, Mansour SA, Shaldam HA, Mossa AT. Impact of oxidative stress and lipid peroxidation induced by Lambda-cyhalothrin on P450 in male rats: the ameliorating effect of zinc. J Environ Anal Toxicol 2014;4:218.Google Scholar

  • [13]

    Goel A, Chauhan DP, Dhawan DK. Protective effects of zinc in chlorpyrifos induced hepatotoxicity: a biological and trace elemental study. Biol Trace Elem Res 2000;74:171.CrossrefGoogle Scholar

  • [14]

    Bebe FN, Panemangalore M. Pesticides and essential minerals modify endogenous antioxidants and cytochrome P450 in tissues of rats. J Environ Sci 2005;40:769–84.Google Scholar

  • [15]

    Brocardo PS, Assini F, Franco JL, Pandolfo P, Muller YM, Takahashi RN, et al. Zinc attenuates malathion-induced depressant-like behavior and confers neuroprotection in the rat brain. Toxicol Sci 2007;97:140–8.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [16]

    Ha KN, Chen Y, Cai J, Sternberg P. Increased glutathione synthesis through an are-nrf2–dependent pathway by zinc in the RPE: implication for protection against oxidative stress. Invest Ophthalmol Vis Sci 2006;47:2709–15.PubMedCrossrefGoogle Scholar

  • [17]

    Sahin N, Kucuk O, Hayirli A, Prasad AS. Role of dietary zinc in heat-stressed poultry: A review. Poult Sci 2009;88:2176–83.Web of ScienceCrossrefPubMedGoogle Scholar

  • [18]

    El-Morsi DA, Abdel Rahman RH, Abou-Arab AA. Pesticides residues in Egyptian diabetic children. J Clinic Toxicol 2012;2:138.Google Scholar

  • [19]

    Aziz MW, Sabit H, Tawakkol W. Biodegradation of malathionby pseudomonas spp. and bacillus spp. isolated frompolluted sites in Egypt. Am-Eurasian J Agric Environ Sci 2014;14:855–62.Google Scholar

  • [20]

    Mansour SA. Environmental impact of pesticides in Egypt. Rev Environ Contamin Toxicol 2008;196:1–51.Google Scholar

  • [21]

    Abou-Arab AA. Behavior of pesticides in tomatoes during commercial and home preparation. Food Chem 1999;65:509–14.CrossrefGoogle Scholar

  • [22]

    Elserougy S, Beshir S, Saad-Hussein A, Abouarab A. Organochlorine pesticide residues in biological compartments of healthy mothers. Toxicol Ind Health 2013;29:441–8.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [23]

    Fossati P, Principe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem 1982;28:2077–80.PubMedGoogle Scholar

  • [24]

    Taylor RP, Broccoli AV, Grisham CM. Enzymatic and colorimetric determination of total serum cholesterol. An undergraduate biochemistry laboratory experiment. J Chem Educ 1978;55:63.PubMedCrossrefGoogle Scholar

  • [25]

    Wieland H, Seidel D. A simple specific method for precipitation of low density lipoproteins. J Lipid Res 1983;24:904–9.PubMedGoogle Scholar

  • [26]

    Lopez–Virella MF, Stone P, Colwell JA. Cholesterol determination in high density lipoproteins separated by three different methods. Clin Chem 1977;23:882–4.PubMedGoogle Scholar

  • [27]

    Warnick GR, Knopp RH, Fitzpatrick V, Branson L. Estimation low density lipoprotein cholesterol by the friedewald equation is adeguate for classifying patients on the basis of nationally recommended cutpoints. Clin Chem 1990;36:15–9.Google Scholar

  • [28]

    Johnsen O, Eliasson R. Evaluation of a commercially available kit for the colorimetric determination of zinc in human seminal plasma. Int J Androl 1987;10:435–40.CrossrefPubMedGoogle Scholar

  • [29]

    Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta 1978;90:37–43.PubMedCrossrefGoogle Scholar

  • [30]

    Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Lab Clin Med 1967;70:158–69.Google Scholar

  • [31]

    Haghighia AZ, Weia R. Measurement of superoxide dismutase in erythrocytes and whole blood using iodonitrotetrazolium violet measurement of superoxide dismutase in erythrocytes and whole blood using iodonitrotetrazolium violet. Analyt Lett 1998;31:981–90.CrossrefGoogle Scholar

  • [32]

    Hernández AF, Lacasaña M, Gil F, Rodríguez-Barranco M, Pla A, López-Guarnido O. Evaluation of pesticide-induced oxidative stress from a gene–environment interaction perspective. Toxicol 2013;307:95–102.CrossrefGoogle Scholar

  • [33]

    Newsholme EA, Leech AR. Biochemistry for the medical sciences. New York, NY, USA: Wiley, 1983.Google Scholar

  • [34]

    Ambali SF, Ayo JO, Ojo SA, Esievo KA. Ameliorative effect of vitamin C on chronic chlorpyrifos-induced erythrocyte osmotic fragility in Wistar rats. Hum Exp Toxicol 2011;30:19–24.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [35]

    Vasdev S, Gill VD, Singal PK. Modulation of oxidative stress-induced changes in hypertension and atherosclerosis by antioxidants. Exp Clin Cardiol 2006;11:206–16.PubMedGoogle Scholar

  • [36]

    Abo-Salem OM, El-Edel RH, Harisac G, El-Halawany N, Ghonaim MM. Experimental diabetic nephropathy can be prevented by propolis: effect on metabolic disturbances and renal oxidative parameters. Pak J Pharm Sci 2009;22:205–10.PubMedGoogle Scholar

  • [37]

    Gradinariu F, Maftei AL, Popa D. Antioxidant status in protected experimental herbicide intoxication. Prev Med 2007;15:63–9.Google Scholar

  • [38]

    Hercberg S, Bertrais S, Czernichow S, Noisette N, Galan P, Jaouen A, et al. Alterations of the lipid profile after 7.5 years of low-dose antioxidant supplementation in the SU.VI. Max study. Lipids 2005;40:335–42.CrossrefWeb of ScienceGoogle Scholar

  • [39]

    Koo SI, Williams DA. Relationship between the nutritional status of zinc and cholesterol concentration of serum lipoproteins in adult male rats. Am J Clin Nutr 1981;34:2376–81.CrossrefPubMedGoogle Scholar

  • [40]

    Kadhim HM, Ismail SH, Hussein KI, Bakir IH, Sahib AS, Khalaf BH, et al. Effects of melatonin and zinc on lipid profile and renal function in type 2 diabetic patients poorly controlled with metformin. J Pineal Res 2006;41:189–93.PubMedCrossrefGoogle Scholar

  • [41]

    Al-Sabaawy OM. The relationship between serum lipid profile and selected trace elements for adult men in Mosul city. Oman Med J 2012;27:300–3.CrossrefPubMedGoogle Scholar

  • [42]

    Taneja SK, Mandal R, Girhotra S. Long term excessive Zn–supplementation promotes metabolic syndrome-X in wistar rats fed sucrose and fat rich semisynthetic diet. Indian J Exp Biol 2006;44:705–18.PubMedGoogle Scholar

  • [43]

    Hiller R, Seigel D, Sperduto RD, Blair N, Burton TC, Farber MD, et al. Serum zinc and serum lipid profiles in 778 adults. Ann Epidemiol 1995;5:490–6.CrossrefPubMedGoogle Scholar

  • [44]

    Grzegorzewska AE, Mariak I. Zinc as a marker of nutrition in continuous ambulatory peritoneal dialysis patients. Adv Perit Dial 2001;17:223–9.PubMedGoogle Scholar

  • [45]

    Moreno JM, Ruiz MC, Ruiz N, Gomez I, Vargas F, Asensio C, et al. Modulation factors of oxidative status in stable renal transplantation. Transplant Proc 2005;37:1428–30.PubMedCrossrefGoogle Scholar

  • [46]

    Rokyta R, Holecek V, Pekárková I, Krejcová J, Racek J, Trefi L, et al. Free radicals after painful stimulation are influenced by antioxidants and analgesics. Neuro Endocrinol Lett 2003;24:304–9.PubMedGoogle Scholar

About the article

Received: 2019-01-01

Accepted: 2019-03-04

Published Online: 2019-08-15

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Journal of Complementary and Integrative Medicine, 20190001, ISSN (Online) 1553-3840, DOI: https://doi.org/10.1515/jcim-2019-0001.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in