Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Data and Information Science

4 Issues per year

Open Access
Online
ISSN
2543-683X
See all formats and pricing
More options …

Patent Citations Analysis and Its Value in Research Evaluation: A Review and a New Approach to Map Technology-relevant Research

Anthony F.J. van Raan
Published Online: 2017-02-18 | DOI: https://doi.org/10.1515/jdis-2017-0002

Abstract

Purpose: First, to review the state-of-the-art in patent citation analysis, particularly characteristics of patent citations to scientific literature (scientific non-patent references, SNPRs). Second, to present a novel mapping approach to identify technology-relevant research based on the papers cited by and referring to the SNPRs.

Design/methodology/approach: In the review part we discuss the context of SNPRs such as the time lags between scientific achievements and inventions. Also patent-to-patent citation is addressed particularly because this type of patent citation analysis is a major element in the assessment of the economic value of patents. We also review the research on the role of universities and researchers in technological development, with important issues such as universities as sources of technological knowledge and inventor-author relations. We conclude the review part of this paper with an overview of recent research on mapping and network analysis of the science and technology interface and of technological progress in interaction with science. In the second part we apply new techniques for the direct visualization of the cited and citing relations of SNPRs, the mapping of the landscape around SNPRs by bibliographic coupling and co-citation analysis, and the mapping of the conceptual environment of SNPRs by keyword co-occurrence analysis.

Findings: We discuss several properties of SNPRs. Only a small minority of publications covered by the Web of Science or Scopus are cited by patents, about 3%–4%. However, for publications based on university-industry collaboration the number of SNPRs is considerably higher, around 15%. The proposed mapping methodology based on a “second order SNPR approach” enables a better assessment of the technological relevance of research.

Research limitations: The main limitation is that a more advanced merging of patent and publication data, in particular unification of author and inventor names, in still a necessity.

Practical implications: The proposed mapping methodology enables the creation of a database of technology-relevant papers (TRPs). In a bibliometric assessment the publications of research groups, research programs or institutes can be matched with the TRPs and thus the extent to which the work of groups, programs or institutes are relevant for technological development can be measured.

Originality/value: The review part examines a wide range of findings in the research of patent citation analysis. The mapping approach to identify a broad range of technology-relevant papers is novel and offers new opportunities in research evaluation practices.

Keywords: Patent citations; Scientific non-patent references; Inventor-author relations; Bibliometric mapping; Science and technology interface; Research evaluation; Technology-relevant publications

References

  • Aharonson, B.S., & Schilling, M.A. (2016). Mapping the technological landscape: Measuring technology distance, technological footprints, and technology evolution. Research Policy, 45(12), 81–96.CrossrefGoogle Scholar

  • Albert, M.B., Avery, D., Narin, F., & McAllister, P. (1991). Direct validation of citation counts as indicators of industrially important patents. Research Policy, 20(3), 251–259.CrossrefGoogle Scholar

  • Alcácer, J., Gittelman, M., & Sampat, B. (2009). Applicant and examiner citations in U.S. patents: An overview and analysis. Research Policy, 38(2), 415–427.CrossrefGoogle Scholar

  • Appio, F.P., Cesaroni, F., & Di Minin, A. (2014). Visualizing the structure and bridges of the intellectual property management and strategy literature: A document co-citation analysis. Scientometrics, 101(1), 623–661.CrossrefGoogle Scholar

  • Arts, S., Appio, F., & van Looy, B. (2012). Validating patent indicators that assess technological radicalness: The case of biotechnology. In E. Archambault, Y. Gingras, & V. Larivière (Eds.), Proceedings of 17th International Conference on Science and Technology Indicators (Vol. 1, pp. 82–97). Montréal: Science-Metrix and OST.Google Scholar

  • Bakker, J., Verhoeven, D., Zhang, L., & van Looy, B. (2016). Patent citation indicators: One size fits all? Scientometrics, 106(1), 187–211.CrossrefGoogle Scholar

  • Balconi, M., Breschi, S., & Lissoni, F. (2004). Networks of inventors and the role of academia: An exploration of Italian patent data. Research Policy, 33(1), 127–145.CrossrefGoogle Scholar

  • Benson, C.L., & Magee, C.L. (2015). Quantitative determination of technological improvement from patent data. PLoS ONE, 10(4), e0121635.Google Scholar

  • Boyack, K.W., & Klavans, R. (2008). Measuring science-technology interaction using rare inventor-author names. Journal of Informetrics, 2, 173–182.Google Scholar

  • Briggs, K. (2015). Co-owner relationships conducive to high quality joint patents. Research Policy, 44(8), 1566–1573.CrossrefGoogle Scholar

  • Breitzman, A., & Thomas, P. (2015). The emerging clusters model: A tool for identifying emerging technologies across multiple patent systems. Research Policy, 44(1), 195–205.CrossrefGoogle Scholar

  • Bruck, P., Rethy, I., Szente, J., Tobochnik, J., & Erdi, P. (2016). Recognition of emerging technology trends: Class-selective study of citations in the US Patent Citation Network. Scientometrics, 107(3), 1465–1475.CrossrefGoogle Scholar

  • Callaert, J., van Looy, B., Verbeek, A., Debackere, K., & Thijs, B. (2006). Traces of prior art: An analysis of non-patent references found in patent documents. Scientometrics, 69(1), 3–20.CrossrefGoogle Scholar

  • Callaert, J., Grouwels, J., & van Looy, B. (2012). Delineating the scientific footprint in technology: Identifying science within non-patent references. Scientometrics, 91(2), 383–398.CrossrefGoogle Scholar

  • Callaert, J., Pellens, M., & van Looy, B. (2014). Sources of inspiration? Making sense of scientific references in patents. Scientometrics, 98(3), 1617–1629.CrossrefGoogle Scholar

  • Callaert, J., Vervenne, J.B., van Looy, B., Magerman, T., Song, X., & Jeuris, W. (2014). Patterns of science-technology linkage. European Commission. Retrieved on November 29, 2016, from http://ec.europa.eu/research/innovation-union/pdf/patterns_of_science-technology_linkage.pdf.

  • Carpenter, M.P., Cooper, M., & Narin, F. (1980). Linkage between basic research literature and patents. Research Management, 13(2), 30–35.Google Scholar

  • Carpenter, M.P., Narin, F., & Woolf, P. (1981). Citation rates to technologically important patents. World Patent Information, 3(4), 160–163.Google Scholar

  • Carpenter, M.P., & Narin, F. (1983). Validation study: Patent citations as indicators of science and foreign dependence. World Patent Information, 5(3), 180–185.Google Scholar

  • Cassiman, B., Glenisson, P., & van Looy, B. (2007). Measuring industry-science links through inventor-author relations: A profiling methodology. Scientometrics, 70(2), 379–391.CrossrefGoogle Scholar

  • Chai, S., & Shih, W. (2016). Bridging science and technology through academic-industry partnerships. Research Policy, 45(1), 148–158.CrossrefGoogle Scholar

  • Cho, Y., & Kim, M. (2014). Entropy and gravity concepts as new methodological indexes to investigate technological convergence: Patent network-based approach. PLoS ONE, 9(6), e98009.CrossrefGoogle Scholar

  • Chowdhury, G., Koya, K., & Philipson, P. (2016). Measuring the impact of research: Lessons from the UK's research excellence framework 2014. PLoS ONE, 11(6), e0156978.Google Scholar

  • Coward, H.R., & Franklin, J.J. (1989). Identifying the science-technology interface: Matching patent data to a bibliometric model. Science, Technology and Human Values, 14(1), 50–77.Google Scholar

  • Criscuolo, P, & Verspagen, B. (2008). Does it matter where patent citations come from? Inventor vs. examiner citations in European patents. Research Policy, 37(10), 1892–1908.CrossrefGoogle Scholar

  • Engelsman, E.C., & van Raan, A.F.J. (1991). Mapping of technology. A first exploration of knowledge diffusion amongst fields of technology. Policy Studies on Technology and Economy (BTE) Series. The Hague: Netherlands Ministry of Economic Affairs.Google Scholar

  • Engelsman, E.C., & van Raan, A.F.J. (1994). A patent-based cartography of technology. Research Policy, 23(94), 1–26.CrossrefGoogle Scholar

  • European Commission. (2005). Study on evaluating the knowledge economy – What are patents actually worth? The value of patents for today’s economy and society (PATVAL study). Retrieved on November 29, 2016, from http://ec.europa.eu/internal_market/indprop/docs/patent/studies/patentstudy-report_en.pdf.

  • Finardi, U. (2011). Time relations between scientific production and patenting of knowledge: The case of nanotechnologies. Scientometrics, 89(1), 37–50.CrossrefGoogle Scholar

  • Fukuzawa, N., & Ida, T. (2016). Science linkages between scientific articles and patents for leading scientists in the life and medical sciences field: The case of Japan. Scientometrics, 106(2), 629–644.CrossrefGoogle Scholar

  • Geim, A.K., & Novoselov, K.S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.CrossrefGoogle Scholar

  • Grant, J., Green, L., & Mason, B. (2003). Basic research and health: A reassessment of the scientific basis for the support of biomedical science. Research Evaluation, 12(3), 217–224.CrossrefGoogle Scholar

  • Grupp, H. (Ed.). (1992). Dynamics of science-based innovation. Heidelberg: Springer-Verlag.Google Scholar

  • Guan, J.C., & Yan, Y. (2015). Technological proximity and recombinative innovation in the alternative energy field. Research Policy, 44(3), 545–559.CrossrefGoogle Scholar

  • Guerzoni, M., Aldridge, T.T., Audretsch, D.B., & Desai, S. (2014). A new industry creation and originality: Insight from the funding sources of university patents. Research Policy, 43(10), 1697–1706.CrossrefGoogle Scholar

  • Halevi, G., & Moed, H.F. (2012). The technological impact of library science research: A patent analysis. In E. Archambault, Y. Gingras, & V. Larivière (Eds.), Proceedings of 17th International Conference on Science and Technology Indicators (Vol.1, pp. 371–380), Montréal: Science-Metrix and OST.Google Scholar

  • Hall, B.H., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations. RAND Journal of Economics, 36(1), 16–38.Google Scholar

  • Harhoff, D., Narin, F., Scherer, M., & Vopel, K. (1999). Citation frequency and the value of patented inventions. Review of Economics and Statistics, 81(3), 511–515.CrossrefGoogle Scholar

  • Hazuda, D.J., Felock, P., Witmer, M., Wolfe, A., Stillmock, K., Grobler, J.A., Espeseth, A., Gabryelski, L., Schleif, W., Blau, C., & Miller, M.D. (2000). Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science, 287(5453), 646–650.Google Scholar

  • Heilbron, J.L. (1972). Illinois Institute of Technology Research Institute - Technology in retrospect and critical events in science. Isis, 63(1), 115.CrossrefGoogle Scholar

  • Ho, M.H.C., Lin, V.H., & Liu, J.S. (2014). Exploring knowledge diffusion among nations: A study of core technologies in fuel cells. Scientometrics, 100(1), 149–171.CrossrefGoogle Scholar

  • Hu, D., Chen, H., Huang, Z., & Roco, M.C. (2007). Longitudinal study on patent citation to academic research articles in nanotechnology (1976–2004). Journal of Nanoparticle Research, 9(9), 529–542.CrossrefGoogle Scholar

  • Huang, M.H., Chen, D.Z., Shen, D.Q., Wang, M.S., & Ye, F.Y. (2015). Measuring technological performance of assignees using trace metrics in three fields. Scientometrics, 104(1), 61–86.CrossrefGoogle Scholar

  • Hummers, W.S., & Offeman, R.E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339–1339.Google Scholar

  • Hung, S.C., & Tu, M.F. (2014). Is small actually big? The chaos of technological change. Research Policy, 43(7), 1227–1238.CrossrefGoogle Scholar

  • Hung, W.C., Ding, C.G., Wang, H.J., Lee, M.C., & Lin, C.P. (2015). Evaluating and comparing the university performance in knowledge. Scientometrics, 102(2), 1269–1286.CrossrefGoogle Scholar

  • Illinois Institute of Technology (IIT). (1968). Technology in retrospect and critical events in science. Vol. 1. Chicago, Illinois: Illinois Institute of Technology Research Institute.Google Scholar

  • Illinois Institute of Technology (IIT). (1969). Technology in retrospect and critical events in science. Vol. 2. Chicago, Illinois: Illinois Institute of Technology Research Institute.Google Scholar

  • Isenson, R.S. (1969). Project Hindsight (final report). Washington, DC, 20301: Office of the Director of Defense Research Engineering, AD495905.Google Scholar

  • Kim, B., Gazzola, G., Lee, J.M., Kim, D., Kim, K., & Jeong, M.K. (2014). Inter-cluster connectivity analysis for technology opportunity discovery. Scientometrics, 98(3), 1811–1825.CrossrefGoogle Scholar

  • Kim, E., Cho, Y., & Kim, W. (2014). Dynamic patterns of technological convergence in printed electronics technologies: Patent citation network. Scientometrics, 98(2), 975–998.CrossrefGoogle Scholar

  • Ko, S.S., Ko, N, Kim, D., Park, H., & Yoon, J. (2014). Analyzing technology impact networks for R&D planning using patents: Combined application of network approaches. Scientometrics, 101(1), 917–936.CrossrefGoogle Scholar

  • Lee, B., & Jeong, Y. (2008). Mapping Korea’s national R&D domain of robot technology by using the co-word analysis. Scientometrics, 77(1), 3–19.CrossrefGoogle Scholar

  • Leten, B., Landoni, P., & van Looy, B. (2014). Science or graduates: How do firms benefit from the proximity of universities? Research Policy, 43(8), 1398–1412.CrossrefGoogle Scholar

  • Leydesdorff, L., & Rafols, I. (2011). Local emergence and global diffusion of research technologies: An exploration of patterns of network formation. Journal of the American Society for Information Science and Technology, 62(5), 846–860.Google Scholar

  • Lo, S.S. (2010). Scientific linkage of science research and technology development: A case of genetic engineering research. Scientometrics, 82(1), 109–120.CrossrefGoogle Scholar

  • Luan, C.J., Hou, H.Y., Wang, Y.T., & Wang, X.W. (2014). Are significant inventions more diversified? Scientometrics, 100(2), 459–470.CrossrefGoogle Scholar

  • Magerman, T., van Looy, B., & Song, X. (2010). Exploring the feasibility and accuracy of Latent Semantic Analysis based text mining techniques to detect similarity between patent documents and scientific publications. Scientometrics, 82(2), 289–306.CrossrefGoogle Scholar

  • Magerman, T., van Looy, B., & Debackere, K. (2015). Does involvement in patenting jeopardize one's academic footprint? An analysis of patent-paper pairs in biotechnology. Research Policy, 44(9), 1702–1713.CrossrefGoogle Scholar

  • Maraut, S., & Martinez, C (2014). Identifying author–inventors from Spain: Methods and a first insight into results. Scientometrics, 101(1), 445–476.CrossrefGoogle Scholar

  • Mehta, A., Rysman, M., & Simcoe, T. (2010). Identifying the age profile of patent citations: New estimates of knowledge diffusion. Journal of Applied Econometrics, 25(7), 1179–1204.CrossrefGoogle Scholar

  • Meyer, M. (2000). Patent citations in a novel field of technology: What can they tell about interactions between emerging communities of science and technology. Scientometrics, 48(2), 151–178.CrossrefGoogle Scholar

  • Meyer, M. (2001). Patent citation analysis in a novel field of technology: An exploration of nano-science and nano-technology. Scientometrics, 51(1), 163–183.CrossrefGoogle Scholar

  • Meyer, M. (2005). Inventor-authors: Knowledge integrators or weak links? An exploratory comparison of co-active researchers with their non-inventing peers in nano-science and technology. Working Paper No 2005/1, Helsinki University of Technology.Google Scholar

  • Morescalchi, A., Pammolli, F., Penner, O., Petersen, A.M., & Riccaboni, M. (2015). The evolution of networks of innovators within and across borders: Evidence from patent data. Research Policy, 44(3), 651–668.CrossrefGoogle Scholar

  • Mowery, D.C., & Ziedonis, A.A. (2015). Markets versus spillovers in outflows of university research. Research Policy, 44(1), 50–66.CrossrefGoogle Scholar

  • Murray, F. (2004). The role of academic inventors in entrepreneurial firms: Sharing the laboratory life. Research Policy, 33(4), 643–659.CrossrefGoogle Scholar

  • Nakamura, H., Suzuki, S., Kajikawa, Y., & Osawa, M. (2015). The effect of patent family information in patent citation network analysis: A comparative case study in the drivetrain domain. Scientometrics, 104(2), 437–452.CrossrefGoogle Scholar

  • Narin, F., & Noma, E. (1985). Is technology becoming science? Scientometrics, 7(3–6), 369–381.CrossrefGoogle Scholar

  • Narin, F., Rosen, M., & Olivastro, D. (1989). Patent citation analysis: New validation studies and linkage statistics. In A.F.J. van Raan, A.J. Nederhoff, & H.F. Moed (Eds.), Science and Technology Indicators: Their Use in Science Policy and their Role in Science Studies. Leiden: DSWO Press.Google Scholar

  • Narin, F., Hamilton, K., & Olivastro, D. (1997). The increasing linkage between U.S. technology and public science. Research Policy, 26(3), 317–330.CrossrefGoogle Scholar

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., & Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.CrossrefGoogle Scholar

  • Noyons, E.C.M., Engelsman, E.C., & van Raan, A.F.J. (1991). Tracing technological developments. Policy Studies on Technology and Economy (BTE) Series. The Hague: Netherlands Ministry of Economic Affairs.Google Scholar

  • Noyons, E.C.M., & van Raan, A.F.J. (1994). Bibliometric cartography of scientific and technological developments of an R&D field. The case of optomechatronics. Scientometrics, 30(1), 157–173.CrossrefGoogle Scholar

  • Noyons, E.C.M., van Raan, A.F.J., Grupp, H., & Schmoch, U. (1994). Exploring the science and technology interface: Inventor-author relations in laser medicine research. Research Policy, 23(4), 443–457.CrossrefGoogle Scholar

  • Noyons, E.C.M., Buter, R.K., van Raan, A.F.J., Schmoch, U., Heinze, T., Hinze, S., & Rangnow, R. (2003). Mapping excellence in science and technology across Europe: Nanoscience and nanotechnology. Report of project EC-PPN CT-2002-0001 to the European Commission. Leiden: Centre for Science and Technology Studies (CWTS), Leiden University.Google Scholar

  • Packer, A., & Webster, K. (1996). Patenting culture in science: Reinventing the scientific wheel of credibility. Science, Technology and Human Values, 21(4), 427–453.Google Scholar

  • Park, H., & Yoon, J. (2014). Assessing coreness and intermediarity of technology sectors using patent co-classification analysis: The case of Korean national R&D. Scientometrics, 98(2), 853–890.CrossrefGoogle Scholar

  • Perkmann, M., Fini, R., Ross, J.M., Salter, A., Silvestri, C., & Tartari, V. (2015). Accounting for universities' impact: Using augmented data to measure academic engagement and commercialization by academic scientists. Research Evaluation, 24(4), 380–391.CrossrefGoogle Scholar

  • Ribeiro, L.C., Kruss, G., Britto, G., Bernardes, A.T., & Albuquerque, E.D.E. (2014). A methodology for unveiling global innovation networks: Patent citations as clues to cross border knowledge flows. Scientometrics, 101(1), 61–83.CrossrefGoogle Scholar

  • Rodriguez, A., Kim, B., Turkoz, M., Lee, J.M., Coh, B.Y., & Jeong, M.K. (2015). New multi-stage similarity measure for calculation of pairwise patent similarity in a patent citation network. Scientometrics, 103(2), 565–581.CrossrefGoogle Scholar

  • Schmoch, U. (1993). Tracing the knowledge transfer from science to technology as reflected in patent indicators. Scientometrics, 26(1), 193–211.CrossrefGoogle Scholar

  • Sherwin, C.W., & Isenson, R.S. (1967). Project Hindsight - A defense department study of the utility of research. Science, 156(3782), 1571–1577.Google Scholar

  • Squicciarini, M., Dernis, H., & Crisculo, C. (2013). Measuring patent quality: Indicators of technological and economic value. OECD Science, Technology and Industry Working Papers, 2013/03, OECD Publishing. Retrieved on November 29, 2016, from http://dx.doi.org/10.1787/5k4522wkw1r8-en.Crossref

  • Small, H.G., Boyack, K.W., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 43(8),1450–1467.CrossrefGoogle Scholar

  • Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., & Ruoff, R.S. (2006). Graphene-based composite materials. Nature, 442(7100), 282–286.CrossrefGoogle Scholar

  • Sternitzke, C. (2010). Knowledge sources, patent protection, and commercialization of pharmaceutical innovations. Research Policy, 39(6), 810–821.CrossrefGoogle Scholar

  • Tijssen, R.J.W., Buter, R.K., & van Leeuwen, T.N. (2000). Technological relevance of science: Validation and analysis of citation linkages between patents and research papers. Scientometrics, 47(2), 389–412.CrossrefGoogle Scholar

  • Tijssen, R.J.W. (2001). Global and domestic utilization of industrial relevant science: Patent citation analysis of science-technology interactions and knowledge flows. Research Policy, 30(1), 35–54.CrossrefGoogle Scholar

  • Trajtenberg, M. (1990). A penny for your quotes: Patent citations and the value of innovations. RAND Journal of Economics, 21(1), 172–187.CrossrefGoogle Scholar

  • Upham, S.P., & Small, H. (2010). Emerging research fronts in science and technology: Patterns of new knowledge development. Scientometrics, 83(1), 15–38.CrossrefGoogle Scholar

  • van Looy, B., Debackere, K., Callaert, J., Tijssen, R., & van Leeuwen, T. (2006). Scientific capabilities and technological performance: An exploration of emerging industrial relevant research domains. Scientometrics, 66(2), 295–310.CrossrefGoogle Scholar

  • van Looy, B., Magerman, T., & Debackere, K. (2007). Developing technology in the vicinity of science: An examination of the relationship between science intensity (of patents) and technological productivity within the field of biotechnology. Scientometrics, 70(2), 441–458.CrossrefGoogle Scholar

  • van Raan, A.F.J. (2015). Dormitory of physical and engineering sciences: Sleeping beauties may be sleeping innovations. PLoS ONE, 10(10), e0139786.Google Scholar

  • van Raan, A.F.J. (2016). Sleeping beauties cited in patents: Is there also a dormitory of inventions? To be published, preprint retrieved on November 29, 2016, from https://arxiv.org/abs/1604.05750.

  • van Vianen, B.G., Moed, H.F., & van Raan, A.F.J. (1990). An exploration of the science base of recent technology. Research Policy, 19(1), 61–81.CrossrefGoogle Scholar

  • Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., & Deleus, F. (2002). Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics, 54(3), 399–420.CrossrefGoogle Scholar

  • Verhoeven, D., Bakker, J., & Veugelers, R. (2016). Measuring technological novelty with patentbased indicators. Research Policy, 45(3), 707–723.CrossrefGoogle Scholar

  • Wada, T. (2016). Obstacles to prior art searching by the trilateral patent offices: Empirical evidence from International Search Reports. Scientometrics, 107(2), 701–722.CrossrefGoogle Scholar

  • Walter, S.G., Schmidt, A., & Walter, A. (2016). Patenting rationales of academic entrepreneurs in weak and strong organizational regimes. Research Policy, 45(2), 533–545.CrossrefGoogle Scholar

  • Waltman, L., van Raan, A.F.J., & Smart, S. (2014). Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods. PLoS ONE, 9(10), e111530.Google Scholar

  • Wang, X., Zhang, X., & Xu, S. (2011). Patent co-citation networks of Fortune 500 companies. Scientometrics, 88(3), 761–770.CrossrefGoogle Scholar

  • Wang, Y., Roijakkers, N., & Vanhaverbeke, W. (2014). How fast do Chinese firms learn and catch up? Evidence from patent citations. Scientometrics, 98(1), 743–761.CrossrefGoogle Scholar

  • Winnink, J.J., Tijssen, R.J.W., & van Raan, A.F.J. (2013). The discovery of introns: Analysis of the science-technology interface. In S. Hinze, & A. Lottmann (Eds.), Translational Twists and Turns: Science as a Socio-economic Endeavor. Proceedings of the 18th International Conference on Science and Technology Indicators (pp. 427–438). Berlin, Institute for Research Information and Quality Assurance (iFQ). Retrieved on November 29, 2016, from http://www.forschungsinfo.de/sti2013/download/sti_2013_proceedings.pdf.

  • Winnink, J.J., & Tijssen, R.J.W. (2014). R&D dynamics and scientific breakthroughs in HIV/AIDS drugs development: The case of integrase inhibitors. Scientometrics, 101(1), 1–16.CrossrefGoogle Scholar

  • Winnink, J.J., & Tijssen, R.J.W. (2015). Early stage identification of breakthroughs at the interface of science and technology: Lessons drawn from a landmark publication. Scientometrics, 102(1), 113–114.CrossrefGoogle Scholar

  • Yang, G.C., Li, G., Li, C.Y., Zhao, Y.H., Zhang, J., Liu, T., Chen, D.Z., & Huang, M.H. (2015). Using the comprehensive patent citation network (CPC) to evaluate patent value. Scientometrics, 105(3), 1319–1346.CrossrefGoogle Scholar

  • Zarrin, H., Higgins, D., Jun, Y., Chen, Z.W., & Fowler, M. (2011). Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. Journal of Physical Chemistry C, 115(42), 20774–20781.Google Scholar

About the article

Received: 2016-11-23

Revised: 2016-11-29

Accepted: 2016-12-03

Published Online: 2017-02-18

Published in Print: 2017-02-01


Citation Information: Journal of Data and Information Science, ISSN (Online) 2543-683X, DOI: https://doi.org/10.1515/jdis-2017-0002.

Export Citation

© 2017 Anthony F.J. van Raan, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in