Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Data and Information Science

4 Issues per year

Open Access
See all formats and pricing
More options …

Insight into the Disciplinary Structure of Nanoscience & Nanotechnology

Chunjuan Luan / Alan L. Porter
  • School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30092, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-02-18 | DOI: https://doi.org/10.1515/jdis-2017-0004


Purpose: This paper aims to gain an insight into the disciplinary structure of nanoscience & nanotechnology (N&N): What is the disciplinary network of N&N like? Which disciplines are being integrated into N&N over time? For a specific discipline, how many other disciplines have direct or indirect connections with it? What are the distinct subgroups of N&N at different evolutionary stages? Such critical issues are to be addressed in this paper.

Design/methodology/approach: We map the disciplinary network structure of N&N by employing the social network analysis tool, Netdraw, identifying which Web of Science Categories (WCs) mediate nbetweenness centrality in different stages of nano development. Cliques analysis embedded in the Ucinet program is applied to do the disciplinary cluster analysis in the study according to the path of “Network-Subgroup-Cliques,” and a tree diagram is selected as the visualizing type.

Findings: The disciplinary network structure reveals the relationships among different disciplines in the N&N developing process clearly, and it is easy for us to identify which disciplines are connected with the core “N&N” directly or indirectly. The tree diagram showing N&N related disciplines provides an interesting perspective on nano research and development (R&D) structure.

Research limitations: The matrices used to draw the N&N disciplinary network are the original ones, and normalized matrix could be tried in future similar studies.

Practical implications: Results in this paper can help us better understand the disciplinary structure of N&N, and the dynamic evolution of N&N related disciplines over time. The findings could benefit R&D decision making. It can support policy makers from government agencies engaging in science and technology (S&T) management or S&T strategy planners to formulate efficient decisions according to a perspective of converging sciences and technologies.

Originality/value: The novelty of this study lies in mapping the disciplinary network structure of N&N clearly, identifying which WCs have a mediating effect in different developmental stages (especially analyzing clusters among disciplines related to N&N, revealing close or distant relationships among distinct areas pertinent to N&N).

Keywords: Nanoscience & nanotechnology (N&N); Disciplinary structure; Social network analysis; Cluster analysis; Cliques analysis; Dynamic evolution


  • Anick, D.J. (2007). The octave potencies convention: A mathematical model of dilution and succussion. Homeopathy, 96(3), 202–208.Web of ScienceCrossrefGoogle Scholar

  • Arora, S.K., Porter, A.L., Youtie, J., & Shapira, P. (2013). Capturing new developments in an emerging technology: An updated search strategy for identifying nanotechnology research outputs. Scientometrics, 95(1), 351–370.CrossrefWeb of ScienceGoogle Scholar

  • Bartol, T., & Stopar, K. (2015). Nano language and distribution of article title terms according to power laws. Scientometrics, 103(2), 435–451.CrossrefWeb of ScienceGoogle Scholar

  • Binnig, G., Quate, C.F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56(9), 930–933.CrossrefGoogle Scholar

  • Borgatti, S.P., & Everett, M.G. (1999). Models of core/periphery structures. Social Networks, 21(4), 375–395.CrossrefGoogle Scholar

  • Bottero, J.Y., Auffan, M., Borschnek, D., Chaurand, P., Labille, J., Levard, C., Masion, A., Tella, M., Rose, J., & Wiesner, M.R. (2015). Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. Comptes Rendus Geoscience, 347(1), 35–42.CrossrefGoogle Scholar

  • Freeman, L. (1977). A set of measures of centrality based upon betweenness. Sociometry, 40(1), 35–41.CrossrefGoogle Scholar

  • Freeman, L.C., Borgatti, S.P., & White, D.R. (1991). Centrality in valued graphs—A measure of betweenness based on network flow. Social Networks, 13(2), 141–154.CrossrefGoogle Scholar

  • Fu, H.Z., & Ho, Y.S. (2015). Top cited articles in thermodynamic research. Journal of Engineering Thermophysics, 24(1), 68–85.Web of ScienceCrossrefGoogle Scholar

  • Garner, J., Porter, A.L., & Newman, N.C. (2014). Distance and velocity measures: Using citations to determine breadth and speed of research impact. Scientometrics, 100(3), 687–703.CrossrefWeb of ScienceGoogle Scholar

  • Gorjiara, T., & Baldock, C. (2014). Nanoscience and nanotechnology research publications: A comparison between Australia and the rest of the world. Scientometrics, 100(1), 121–148.CrossrefWeb of ScienceGoogle Scholar

  • Guan, J.C., & Wei, H. (2015). A bilateral comparison of research performance at an institutional level. Scientometrics, 104(1), 147–173.CrossrefWeb of ScienceGoogle Scholar

  • Heimeriks, G. (2013). Interdisciplinarity in biotechnology, genomics and nanotechnology. Science and Public Policy, 40(1), 97–112.Web of ScienceCrossrefGoogle Scholar

  • Herranz, N., & Ruiz-Castillo, J. (2012). Sub-field normalization in the multiplicative case: Average-based citation indicators. Journal of Informetrics, 6(4), 543–556.CrossrefWeb of ScienceGoogle Scholar

  • Johnson, J.C., Luczkovich, J.J., Borgatti, S.P., & Snijders, T.A.B. (2009). Using social network analysis tools in ecology: Markov process transition models applied to the seasonal trophic network dynamics of the Chesapeake Bay. Ecological Modelling, 220(22), 3133–3140.Web of ScienceCrossrefGoogle Scholar

  • Jung, H.J., & Lee, J. (2014). The impacts of science and technology policy interventions on university research: Evidence from the US National Nanotechnology Initiative. Research Policy, 43(1), 74–91.CrossrefWeb of ScienceGoogle Scholar

  • Kostoff, R.N., Barth, R.B., & Lau, C.G.Y. (2008). Relation of seminal nanotechnology document production to total nanotechnology document production—South Korea. Scientometrics, 76(1), 43–67.CrossrefWeb of ScienceGoogle Scholar

  • Kostoff, R.N., Koytcheff, R.G., & Lau, C.G.Y. (2007). Global nanotechnology research metrics. Scientometrics, 70(3), 565–601.Web of ScienceCrossrefGoogle Scholar

  • Krug, H.F., & Wick, P. (2011). Nanotoxicology: An interdisciplinary challenge. Angewandte Chemie-International Edition, 50(6), 1260–1278.CrossrefWeb of ScienceGoogle Scholar

  • Leydesdorff, L. (2008). On the normalization and visualization of author co-citation data: Salton’s cosine versus the Jaccard index. Journal of the American Society for Information Science and Technology, 59(1), 77–85.CrossrefGoogle Scholar

  • Leydesdorff, L. (2013). An evaluation of impacts in “nanoscience & nanotechnology”: Steps towards standards for citation analysis. Scientometrics, 94(1), 35–55.CrossrefWeb of ScienceGoogle Scholar

  • Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94(2), 589–593.Web of ScienceCrossrefGoogle Scholar

  • Leydesdorff, L., & Wagner, C. (2009). Is the United States losing ground in science? A global perspective on the world science system. Scientometrics, 78(1), 23–36.CrossrefWeb of ScienceGoogle Scholar

  • Lin, C.S.L., & Ho, Y.S. (2015). A bibliometric analysis of publications on pluripotent stem cell research. Cell Journal, 17(1), 59–70.Google Scholar

  • Lindquist, N.C. (2014). Interdisciplinary chemistry and physics research and advanced nanotechnology labs. Abstracts of Papers of the American Chemical Society, 247.Google Scholar

  • Martin, Y., Williams, C.C., & Wickramasinghe, H.K.(1987). Atomic force microscope foce mapping and profiling on a sub 100-A scale. Journal of Applied Physics, 61(10), 4723–4729.CrossrefGoogle Scholar

  • Milanez, D.H., do Amaral, R.M., Faria, L.I.L. de, & Gregolin, J.A.R. (2013). Assessing nanocellulose developments using science and technology indicators. Materials Research-Ibero-American Journal of Materials, 16(3), 635–641.Google Scholar

  • Mody, C.C.M., & Choi, H. (2013). From materials science to nanotechnology: Interdisciplinary center programs at Cornell University, 1960–2000. Historical Studies in the Natural Sciences, 43(2), 121–161.Google Scholar

  • Mohammadi, E. (2012). Knowledge mapping of the Iranian nanoscience and technology: A text mining approach. Scientometrics, 92(3), 593–608.Web of ScienceCrossrefGoogle Scholar

  • National Academies Committee on Facilitating Interdisciplinary Research, Committee on Science, Engineering, Public Policy (COSEPUP). (2005). Facilitating interdisciplinary research. Washington, D.C.: National Academies Press.Google Scholar

  • Patenaude, J., Legault, G.A., Beauvais, J., Bernier, L., Beland, J.P., Boissy, P., Chenel, V., Daniel, C.E., Genest, J., Poirier, M.S., & Tapin, D. (2015). Framework for the analysis of nanotechnologies’ impacts and ethical acceptability: Basis of an interdisciplinary approach to assessing novel technologies. Science and Engineering Ethics, 21(2), 293–315.CrossrefWeb of ScienceGoogle Scholar

  • Persson, O., & Dastidar, P.G. (2013). Citation analysis to reconstruct the dynamics of Antarctic ozone hole research and formulation of the Montreal Protocol. Current Science, 104(7), 835–840.Google Scholar

  • Porter, A.L., & Youtie, J. (2009). How interdisciplinary is nanotechnology? Journal of Nanoparticle Research, 11(5), 1023–1041.Web of ScienceCrossrefGoogle Scholar

  • Porter, A.L., Youtie, J., Shapira, P., & Schoeneck, D.J. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.CrossrefWeb of ScienceGoogle Scholar

  • Roco, M.C. (2001). From vision to the implementation of the US National Nanotechnology Initiative. Journal of Nanoparticle Research, 3(1), 5–11.CrossrefGoogle Scholar

  • Schummer, J. (2004). Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425–465.CrossrefGoogle Scholar

  • Souminen, A., Li, Y., & Youtie, J. (2016). A bibliometric analysis of the development of next generation active nanotechnologies. Journal of Nanoparticle Research, 18(9), 270.CrossrefWeb of ScienceGoogle Scholar

  • Sweileh, W.M., Al-Jabi, S.W., Sawalha, A.F., & Zyoud, S.H. (2014). Bibliometric analysis of nutrition and dietetics research activity in Arab countries using ISI Web of Science database. Springerplus, 3(1), 718.Web of ScienceCrossrefGoogle Scholar

  • Tersoff, J., & Hamann, D.R. (1983). Theory and application for the scanning tunneling microscope. Physical Review Letters, 50(25), 1998–2001.CrossrefGoogle Scholar

  • Tersoff, J., & Hamann, D.R. (1985). Theory of the scanning tunneling microscope. Physical Review B, 31(2), 805–813.CrossrefGoogle Scholar

  • Wang, J., & Shapira, P. (2011). Funding acknowledgement analysis: An enhanced tool to investigate research sponsorship impacts: The case of nanotechnology. Scientometrics, 87(3), 563–586.Web of ScienceCrossrefGoogle Scholar

  • Wong, P.K., Ho, Y.P., & Chan, C.K. (2007). Internationalization and evolution of application areas of an emerging technology: The case of nanotechnology. Scientometrics, 70(3), 715–737.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2016-06-30

Revised: 2016-10-12

Accepted: 2016-10-14

Published Online: 2017-02-18

Published in Print: 2017-02-01

Citation Information: Journal of Data and Information Science, ISSN (Online) 2543-683X, DOI: https://doi.org/10.1515/jdis-2017-0004.

Export Citation

© 2017 Chunjuan Luan et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in