Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Data and Information Science

4 Issues per year

Open Access
Online
ISSN
2543-683X
See all formats and pricing
More options …

Visualization of Disciplinary Profiles: Enhanced Science Overlay Maps

Stephen Carley
  • Corresponding author
  • Search Technology Inc., Norcross, GA 30092, United States of America
  • Program in Science, Technology & Innovation Policy (STIP), School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alan L. Porter
  • Search Technology Inc., Norcross, GA 30092, United States of America
  • Program in Science, Technology & Innovation Policy (STIP), School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ismael Rafols
  • Ingenio (CSIC-UPV); Universitat Politècnica de València, València, Spain; and Science Policy Research Unit (SPRU), University of Sussex, Brighton, United Kingdom of Great Britain and Northern Ireland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Loet Leydesdorff
  • Amsterdam School of Communication Research (ASCoR), University of Amsterdam, P.O. Box 15793, 1001 NG Amsterdam, The Netherlands
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-22 | DOI: https://doi.org/10.1515/jdis-2017-0015

Abstract

Purpose: The purpose of this study is to modernize previous work on science overlay maps by updating the underlying citation matrix, generating new clusters of scientific disciplines, enhancing visualizations, and providing more accessible means for analysts to generate their own maps.

Design/methodology/approach: We use the combined set of 2015 Journal Citation Reports for the Science Citation Index (n of journals = 8,778) and the Social Sciences Citation Index (n = 3,212) for a total of 11,365 journals. The set of Web of Science Categories in the Science Citation Index and the Social Sciences Citation Index increased from 224 in 2010 to 227 in 2015. Using dedicated software, a matrix of 227 × 227 cells is generated on the basis of whole-number citation counting. We normalize this matrix using the cosine function. We first develop the citing-side, cosine-normalized map using 2015 data and VOSviewer visualization with default parameter values. A routine for making overlays on the basis of the map (“wc15.exe”) is available at http://www.leydesdorff.net/wc15/index.htm.

Findings: Findings appear in the form of visuals throughout the manuscript. In Figures 1–9 we provide basemaps of science and science overlay maps for a number of companies, universities, and technologies.

Research limitations: As Web of Science Categories change and/or are updated so is the need to update the routine we provide. Also, to apply the routine we provide users need access to the Web of Science.

Practical implications: Visualization of science overlay maps is now more accurate and true to the 2015 Journal Citation Reports than was the case with the previous version of the routine advanced in our paper.

Originality/value: The routine we advance allows users to visualize science overlay maps in VOSviewer using data from more recent Journal Citation Reports.

Keywords: Science overlay maps; Science visualization; Scientometrics; Bibliometrics; Interdisciplinary research; Multidisciplinarity; Research policy; Research management

References

  • Bensman, S.J., & Leydesdorff, L. (2009). Definition and identification of journals as bibliographic and subject entities: Librarianship vs. ISI Journal Citation Reports (JCR) methods and their effect on citation measures. Journal of the American Society for Information Science and Technology, 60(6), 1097–1117.CrossrefGoogle Scholar

  • Blondel, V.D., Guillaume, J.L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 8, 10008.CrossrefGoogle Scholar

  • Boyack, K., Börner, K., & Klavans, R. (2007). Mapping the structure and evolution of chemistry research. In D. Torres-Salinas, & H. Moed (Eds.), Proceedings of the 11th International Conference of the International Society for Scientometrics and Informetrics (pp. 112–123). Madrid, Spain: Consejo Superior de Investigaciones Cientificas.Google Scholar

  • Bordons, M., Bravo, C., & Barrigon, S. (2004). Time-tracking of the research profile of a drug using bibliometric tools. Journal of the American Society for Information Science and Technology, 55(5), 445–461.CrossrefGoogle Scholar

  • Carley, S., & Porter, A.L. (2012). A forward diversity index. Scientometrics, 90(2), 407–427.Web of ScienceCrossrefGoogle Scholar

  • Costas, R., van Leeuwen, T.N., & Bordons, M. (2010). A bibliometric classificatory approach for the study and assessment of research performance at the individual level: The effects of age on productivity and impact. Journal of the American Society for Information Science and Technology, 61(8), 1564–1581.Web of ScienceGoogle Scholar

  • de Nooy, W., Mrvar, A., & Batgelj, V. (2011). Exploratory social network analysis with Pajek (2nd Edition). New York, NY: Cambridge University Press.Google Scholar

  • Garner, J., Porter, A.L., Borrego, M., Tran, E., & Teutonico, R. (2013). Facilitating social and natural science cross-disciplinarity: Assessing the human and social dynamics program. Research Evaluation, 22(2), 134–144.Web of ScienceGoogle Scholar

  • Glänzel, W., & Schubert, A. (2003). A new classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, 56(3), 357–367.CrossrefGoogle Scholar

  • Jaffe, A.B. (1986). Technological opportunity and spillovers of R&D: Evidence from firm’s patents, profits, and market value. American Economic Review, 76(5), 984–1001.Google Scholar

  • Katz, J.S., & Hicks, D.M. (1995). The classification of interdisciplinary journals: A new approach. In Proceedings of the fifth biennial conference of the international society for scientometrics and infometrics (pp. 245–255). Medford, NJ: Learned Information, Inc.Google Scholar

  • Klavans, R., & Boyack, K. (2009). Towards a consensus map of science. Journal of the American Society for Information Science and Technology, 60(3), 455–476.CrossrefGoogle Scholar

  • Klavans, R., & Boyack, K.W. (in press). Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge? Journal of the American Society for Information Science and Technology. Retrieved on June 30, 2017, from http://arxiv.org/abs/1511.05078.

  • Leydesdorff, L., & Bornmann, L. (2016). The operationalization of “fields” as WoS subject categories (WCs) in evaluative bibliometrics: The cases of “Library and Information Science” and “Science & Technology Studies”. Journal of the Association for Information Science and Technology, 67(3), 707–714.Google Scholar

  • Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362.CrossrefGoogle Scholar

  • Leydesdorff, L. (2008). On the normalization and visualization of author co-citation data: Salton’s cosine versus the Jaccard index. Journal of the American Society for Information Science and Technology, 59(1), 77–85.CrossrefGoogle Scholar

  • Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94(2), 589–593.Web of ScienceCrossrefGoogle Scholar

  • Leydesdorff, L., Hammarfelt, B., & Salah, A.A.A. (2011). The structure of the Arts & Humanities Citation Index: A mapping on the basis of aggregated citations among 1,157 journals. Journal of the American Society for Information Science and Technology, 62(12), 2414–2426.Google Scholar

  • Moed, H.F., de Bruin, R.E., & van Leeuwen, T.N. (1995). New bibliometric tools for the assessment of national research performance: Database description, overview of indicators and first applications. Scientometrics, 33(3), 381–422.CrossrefGoogle Scholar

  • Morillo, F., Bordons, M., & Gomez, I. (2001). An approach to interdisciplinarity through bibliometric indicators. Scientometrics, 51(1), 203–222.CrossrefGoogle Scholar

  • Porter, A.L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745. Retrieved on July 10, 2017, from http://www.springerlink.com/content/c87k7754t4n24385/fulltext.pdf.Crossref

  • Porter, A.L., Cohen, A.S., Roessner, J.D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.CrossrefWeb of ScienceGoogle Scholar

  • Pudovkin, A.I., & Garfield, E. (2002). Algorithmic procedure for finding semantically related journals. Journal of the American Society for Information Science and Technology, 53(13), 1113–1119.CrossrefGoogle Scholar

  • Rafols, I., & Leydesdorff, L. (2009). Content-based and algorithmic classifications of journals: Perspectives on the dynamics of scientific communication and indexer effects. Journal of the American Society for Information Science and Technology, 60(9), 1823–1835.CrossrefGoogle Scholar

  • Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.Web of ScienceCrossrefGoogle Scholar

  • Rafols, I., Porter, A., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for Information Science and Technology, 61(9), 1871–1887.CrossrefGoogle Scholar

  • Rahman, A.J., Guns, R., Rousseau, R., & Engels, T.C. (2015). Is the expertise of evaluation panels congruent with the research interests of the research groups: A quantitative approach based on barycenters. Journal of Informetrics, 9(4), 704–721.CrossrefWeb of ScienceGoogle Scholar

  • Rao, C.R. (1982), Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21(1), 24–43.CrossrefGoogle Scholar

  • Rehn, C., Gornitzki, C., Larsson, A., & Wadskog, D. (2014). Bibliometric Handbook for Karolinska Institutet. Stockholm: Karolinska Institute.Google Scholar

  • Riopelle, K., Leydesdorff, L., & Li, J. (2014). How to create an overlay map of science using the Web of Science. Retrieved on July 10, 2017, from http://www.leydesdorff.net/overlaytoolkit/manual.riopelle.pdf.

  • Schubert, A., Glänzel, W., & Braun, T. (1986). Relative indicators of publication output and citation impact of European physics research, 1978–1980. Czechoslovak Journal of Physics, 36(1), 126–129.CrossrefGoogle Scholar

  • Schubert, A., Glänzel, W., & Braun, T. (1989). Scientometric datafiles—A comprehensive set of indicators on 2649 journals and 96 countries in all major science fields and subfields 1981–1985. Scientometrics, 16(1–6), 3–478.CrossrefGoogle Scholar

  • Soós, S., & Kampis, G. (2011). Towards a typology of research performance diversity: The case of top Hungarian players. Scientometrics, 87(2), 357–371.Web of ScienceCrossrefGoogle Scholar

  • Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 4(15), 707–719.CrossrefGoogle Scholar

  • US National Academies, Committee on Science, Engineering & Public Policy. (2005). Facilitating interdisciplinary research. Washington, DC: National Research Council.Google Scholar

  • van Eck, N.J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651.CrossrefGoogle Scholar

  • van Eck, N.J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.Web of ScienceCrossrefGoogle Scholar

  • van Eck, N., Waltman, L., van Raan, A., Klautz, R., & Peul, W. (2013). Citation analysis may severely underestimate the impact of clinical research as compared to basic research. PLoS ONE, 8(4), e62395–e62395.Google Scholar

  • van Leeuwen, T.N., & Calero Medina, C. (2012). Redefining the field of economics: Improving field normalization for the application of bibliometric techniques in the field of economics. Research Evaluation, 21(1), 61–70.CrossrefWeb of ScienceGoogle Scholar

  • Vinkler, P. (1986). Evaluation of some methods for the relative assessment of scientific publications. Scientometrics, 10(3–4), 157–177.CrossrefGoogle Scholar

  • Wallace, M.L., & Rafols, I. (2015). Research portfolio analysis in science policy: Moving from financial returns to societal benefits. Minerva, 53(2), 89–115.CrossrefWeb of ScienceGoogle Scholar

  • Waltman, L., & van Eck, N.J. (2012). A new methodology for constructing a publication—level classification system of science. Journal of the American Society for Information Science and Technology, 63(12), 2378–2392.CrossrefGoogle Scholar

  • Waltman, L., van Eck, N.J., & Noyons, E. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.CrossrefGoogle Scholar

  • Wang, Q., & Waltman, L. (2016). Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus. Journal of Informetrics, 10(2), 347–364.CrossrefWeb of ScienceGoogle Scholar

  • Wouters, P. (1998). The signs of science. Scientometrics, 41(1–2), 225–241.CrossrefGoogle Scholar

  • Zhang, L., Rousseau, R., & Glänzel, W. (2016). Diversity of references as an indicator for interdisciplinarity of journals: Taking similarity between subject fields into account. Journal of the American Society for Information Science and Technology, 67(5), 1257–1265.CrossrefGoogle Scholar

  • Zitt, M., Bassecoulard, E., & Okubo, Y. (2000). Shadows of the past in international cooperation: Collaboration profiles of the top five producers of science. Scientometrics, 47(3), 627–657.CrossrefGoogle Scholar

About the article

Received: 2017-05-20

Revised: 2017-07-13

Accepted: 2017-07-21

Published Online: 2017-08-22

Published in Print: 2017-08-01


Citation Information: Journal of Data and Information Science, ISSN (Online) 2543-683X, DOI: https://doi.org/10.1515/jdis-2017-0015.

Export Citation

© 2017 Stephen Carley et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in