Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Econometric Methods

Ed. by Abrevaya, Jason / Honore, Bo Erno / Inoue, Atsushi / Porter, Jack / Wooldridge, Jeffrey

1 Issue per year

Online
ISSN
2156-6674
See all formats and pricing
More options …

Multivariate Fractional Regression Estimation of Econometric Share Models

John Mullahy
  • Corresponding author
  • Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut St., 787 WARF, Madison, WI 53726 USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-22 | DOI: https://doi.org/10.1515/jem-2012-0006

Abstract

This paper describes and applies econometric strategies for estimating regression models of economic share data outcomes where the shares may take boundary values (zero and 1) with nontrivial probability. The main focus of the paper is on the conditional mean structures of such data. The paper proposes an extension of the fractional regression methodology proposed by (Papke, L. E., and J. M. Wooldridge. 1996. “Econometric Methods for Fractional Response Variables with an Application to 401(k) Plan Participation Rates.” Journal of Applied Econometrics 11: 619–632; Papke, L. E. and J. M. Wooldridge. 2008. “Panel Data Methods for Fractional Response Variables with an Application to Test Pass Rates.” Journal of Econometrics 145: 121–133.), in univariate cross-sectional and panel contexts. The paper discusses the stochastic aspects of share definition and measurement, and summarizes important features of the existing literature on econometric strategies for share model estimation. The paper then goes on to discuss the univariate fractional regression estimation strategies proposed by Papke and Wooldridge and to extend the fractional regression approach to estimation of and inference about regression models describing the multivariate share data. Some issues involving outcome aggregation/disaggregation are considered, as is a full likelihood estimation approach based on Dirichlet-multinomial models. The paper demonstrates the workings of these various empirical strategies by estimating models of financial asset portfolio shares using data from the 2001, 2004, and 2007 US Surveys of Consumer Finances.

Keywords: fractional regression; multinominal model; share equations

References

  • Aitchison, J. 1982. “The Statistical Analysis of Compositional Data.” JRSS-B 44: 139–177.Google Scholar

  • Andrews, D. W. K. 1988. “Chi-Square Diagnostic Tests for Econometric Models: Theory.” Econometrica 56: 1419–1453.CrossrefGoogle Scholar

  • Benjamini, Y., and D. Yekutieli. 2001. “The Control of the False Discovery Rate in Multiple Testing under Dependency.” Annals of Statistics 29: 1165–1188.Google Scholar

  • Berry, S., J. Levinsohn, and A. Pakes. 1995. “Automobile Prices in Market Equilibrium.” Econometrica 63: 841–890.Google Scholar

  • Billheimer, D., P. Guttorp, and W. F. Fagan. 2001. “Statistical Interpretation of Species Composition.” JASA 96: 1205–1214.Google Scholar

  • Brown, B. W., and M. B. Walker. 1989. “The Random Utility Hypothesis and Inference in Demand Systems.” Econometrica 57: 815–829.CrossrefGoogle Scholar

  • Brown, B. W., and M. B. Walker. 1995. “Stochastic Specification in Random Production Models of Cost-Minimizing Firms.” Journal of Econometrics 66: 175–205.Google Scholar

  • Bucks, B. K., A. B. Kennickell, T. L. Mach, and K. B. Moore. 2009. “Changes in U.S. Family Finances from 2004 to 2007: Evidence from the Survey of Consumer Finances.” Federal Reserve Bulletin 95: A1–A55.Google Scholar

  • Chavas, J.-P., and K. Segerson. 1987. “Stochastic Specification and Estimation of Share Equation Systems.” Journal of Econometrics 35: 337–358.CrossrefGoogle Scholar

  • Chesher, A. 1983. “The Information Matrix Text: Simplified Calculation via a Score Test Implementation.” Economics Letters 13: 45–48.CrossrefGoogle Scholar

  • Christensen, L. R., D. W. Jorgenson, and L. J. Lau. 1975. “Transcendental Logarithmic Utility Functions.” American Economic Review 65: 367–383.Google Scholar

  • Considine, T. J. and T. D. Mount. 1984. “The Use of Linear Logit Models for Dynamic Input Demand Systems.” Review of Economics and Statistics 66: 434–443.CrossrefGoogle Scholar

  • Cotterman, R., and F. Peracchi. 1992. “Classification and Aggregation: An Application to Industrial Classification in CPS Data.” Journal of Applied Econometrics 7: 31–51.CrossrefGoogle Scholar

  • Cramer, J. S., and G. Ridder. 1991. “Pooling States in the Multinomial Logit Model.” Journal of Econometrics 47: 267–272.CrossrefGoogle Scholar

  • Crawford, D. L., R. A. Pollak, and F. Vella. 1998. “Simple Inference in Multinomial and Ordered Logit.” Econometric Reviews 17: 289–299.CrossrefGoogle Scholar

  • Dubin, J. A. 2007. “Valuing Intangible Assets with a Nested Logit Market Share Model.” Journal of Econometrics 139: 285–302.CrossrefGoogle Scholar

  • Fry, J. M., T. R. L. Fry, and K. R. McLaren. 1996. “The Stochastic Specification of Demand Share Equations: Restricting Budget Shares to the Unit Simplex.” Journal of Econometrics 73: 377–385.Google Scholar

  • Gourieroux, C., A. Monfort, and A. Trognon. 1984a. “Pseudo Maximum Likelihood Methods: Theory.” Econometrica 52: 681–700.CrossrefGoogle Scholar

  • Gourieroux, C., A. Monfort, and A. Trognon. 1984b. “Pseudo Maximum Likelihood Methods: Applications to Poisson Models.” Econometrica 52: 701–720.CrossrefGoogle Scholar

  • Graybill, F. A. 1983. Matrixes with Applications in Statistics. Belmont, CA: Wadsworth Publishing.Google Scholar

  • Guimarães, P. and R. C. Lindrooth. 2007. “Controlling for Overdispersion in Grouped Conditional Logit Models: A Computationally Simple Application of Dirichlet-Multinomial Regression.” Econometrics Journal 10: 439–452.CrossrefGoogle Scholar

  • Hansen, B. 2010. Econometrics. Textbook manuscript, Dept. of Economics, UW-Madison.Google Scholar

  • Hausman, J., and D. McFadden. 1984. “Specification Tests for the Multinomial Logit Model.” Econometrica 52: 1219–1240.CrossrefGoogle Scholar

  • Heaton, J., and D. Lucas. 2000. “Portfolio Choice and Asset Prices: The Importance of Entrepreneurial Risk.” Journal of Finance 55: 1163–1198.CrossrefGoogle Scholar

  • Heckman, J. J., and R. J. Willis. 1977. “A Beta-Logistic Model for the Analysis of Sequential Labor Force Participation by Married Women.” Journal of Political Economy 85: 27–58.CrossrefGoogle Scholar

  • Hill, M. A. 1983. “Female Labor Force Participation in Developing and Developed Countries-Consideration of the Informal Sector.” Review of Economics and Statistics 65: 459–468.CrossrefGoogle Scholar

  • Intriligator, M. D. 1971. Mathematical Optimization and Economic Theory. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar

  • Johnson, N. L., S. Kotz, and N. Balakrishnan. 1997. Discrete Multivariate Distributions. New York: Wiley.Google Scholar

  • Koch, S. F. 2010. Fractional Multinomial Response Models with an Application to Expenditure Shares. Working Paper, Department of Economics, University of Pretoria.Google Scholar

  • Kooreman, P., and A. Kapteyn. 1987. “A Disaggregated Analysis of the Allocation of Time within the Household.” Journal of Political Economy 95: 223–249.CrossrefGoogle Scholar

  • Lancaster, T. 1984. “The Covariance Matrix of the Information Matrix Test.” Econometrica 52: 1051–1053.CrossrefGoogle Scholar

  • Lee, L.-F., and M. M. Pitt. 1986. “Microeconometric Demand System with Binding Nonnegativity Constraints: The Dual Approach.” Econometrica 54: 1237–1242.Google Scholar

  • McElroy, M. B. 1987. “Additive General Error Models for Production, Cost, and Derived Demand or Share Systems.” Journal of Political Economy 95: 737–757.CrossrefGoogle Scholar

  • Morey, E. R., D. Waldman, D. Assane, and D. Shaw. 1995. “Searching for a Model of Multiple-Site Recreation Demand That Admits Interior and Boundary Solutions.” American Journal of Agricultural Economics 77: 129–140.CrossrefGoogle Scholar

  • Mullahy, J. 2004. “Squandering Time? Economic Aspects of Children’s Time Use.” Working Paper, University of Wisconsin.Google Scholar

  • Mullahy, J. and S. A. Robert. 2010. “No Time to Lose: Time Constraints and Physical Activity in the Production of Health.” Review of Economics of the Household 8: 409–432.Google Scholar

  • Orme, C. 1990. “The Small-Sample Performance of the Information-Matrix Test.” Journal of Econometrics 46: 309–331.CrossrefGoogle Scholar

  • Papke, L. E., and J. M. Wooldridge. 1996. “Econometric Methods for Fractional Response Variables with an Application to 401(k) Plan Participation Rates.” Journal of Applied Econometrics 11: 619–632.Google Scholar

  • Papke, L. E. and J. M. Wooldridge. 2008. “Panel Data Methods for Fractional Response Variables with an Application to Test Pass Rates.” Journal of Econometrics 145: 121–133.CrossrefGoogle Scholar

  • Poterba, J. M. and A. A. Samwick. 2001. “Household Portfolio Allocation over the Life Cycle.” Chapter 2 In Aging Issues in the United States and Japan, edited by S. Ogura, T. Tachibanaki and D. A. Wise, Chicago: University of Chicago Press for NBER, 65–104.Google Scholar

  • Poterba, J. M., and A. A. Samwick. 2002. “Taxation and Household Portfolio Composition: U.S. Evidence from the 1980s and 1990s.” Journal of Public Economics 87: 5–38.Google Scholar

  • Ramalho, E. A., J. S. Ramalho, and J. M. R. Murteira. 2011. “Alternative Estimating and Testing Empirical Strategies for Fractional Regression Models.” Journal of Economic Surveys 25: 19–68.CrossrefGoogle Scholar

  • Sivakumar, A., and C. Bhat. 2002. “Fractional Split-Distribution Model for Statewide Commodity-Flow Analysis.” Transportation Research Record 1790: 80–88.Google Scholar

  • Theil, H. 1969. “A Multinomial Extension of the Linear Logit Model.” International Economic Review 10: 251–259.CrossrefGoogle Scholar

  • Vanness, D. J., and J. Hanmer. 2010. “Health Utility Crosswalks: A Bayesian Beta Regression Approach.” Presented at the 3rd Biennial Conference of the American Society of Health Economists, Cornell University.Google Scholar

  • Wales, T. J. and A. D. Woodland. 1977. “Estimation of the Allocation of Time for Work, Leisure, and Housework.” Econometrica 45: 115–132.CrossrefGoogle Scholar

  • White, H. 1982. “Maximum Likelihood Estimation of Misspecified Models.” Econometrica 50: 1–25.Google Scholar

  • Woodland, A. D. 1979. “Stochastic Specification and the Estimation of Share Equations.” Journal of Econometrics 10: 361–383.CrossrefGoogle Scholar

  • Ye, X., and R. M. Pendyala. 2005. “A Model of Daily Time Use Allocation Using Fractional Logit Methodology.” In Transportation and Traffic Theory: Flow, Dynamics, and Human Interaction, edited by H. S. Mahmassani, Oxford: Pergamon, Elsevier Science Ltd. 507–524.Google Scholar

About the article

Corresponding author: John Mullahy, Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut St., 787 WARF, Madison, WI 53726 USA, Phone:+1-608-265-5410, E-mail:


Published Online: 2014-03-22

Published in Print: 2015-01-01


Citation Information: Journal of Econometric Methods, ISSN (Online) 2156-6674, ISSN (Print) 2194-6345, DOI: https://doi.org/10.1515/jem-2012-0006.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Lorenzo Almada and Ian M. McCarthy
Journal of Economic Behavior & Organization, 2017
[2]
Robert J. Schneider, Lingqian Hu, and Joseph Stefanich
Transportation, 2017
[3]
Rafay Ishfaq and Uzma Raja
Decision Sciences, 2017
[4]
Tianyuan Luo and Cesar L Escalante
The Economic and Labour Relations Review, 2017, Volume 28, Number 2, Page 270
[5]
Philipp Noormann and Sebastian Tillmanns
Journal of Business Economics, 2017, Volume 87, Number 3, Page 359
[6]
Roberto Martínez-Espiñeira, Miguel A. García-Rubio, and Francisco González-Gómez
Water Resources and Economics, 2017, Volume 18, Page 20

Comments (0)

Please log in or register to comment.
Log in