Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Econometric Methods

Ed. by Giacomini, Raffaella / Li, Tong

Mathematical Citation Quotient (MCQ) 2018: 0.06

See all formats and pricing
More options …

Exponential Regression of Fractional-Response Fixed-Effects Models with an Application to Firm Capital Structure

Esmeralda A. RamalhoORCID iD: http://orcid.org/0000-0002-9525-0082 / Joaquim J.S. RamalhoORCID iD: http://orcid.org/0000-0003-3533-2411 / Luís M.S. Coelho
Published Online: 2016-09-14 | DOI: https://doi.org/10.1515/jem-2015-0019


New fixed-effects estimators are proposed for logit and complementary loglog fractional regression models. The standard specifications of these models are transformed into a form of exponential regression with multiplicative individual effects and time-variant heterogeneity, from which four alternative estimators that do not require assumptions on the distribution of the unobservables are proposed. All new estimators are robust to both time-variant and time-invariant heterogeneity and can accomodate fractional responses with observations at the boundary value of zero. Additionally, some of these estimators can be applied to dynamic panel data models and can accommodate endogenous explanatory variables without requiring the specification of a reduced form model. A Monte Carlo study and an application to firm capital structure choices illustrate the usefulness of the suggested estimators.

This article offers supplementary material which is provided at the end of the article.

Keywords: dynamic models; endogeneity; exponential regression; fixed effects; fractional responses; heterogeneity; panel data

JEL Classification: C25; C23


  • Alti, A. 2006. “How Persistent is the Impact of Market Timing on Capital Structure.” Journal of Finance 61: 1681–1710.CrossrefGoogle Scholar

  • Baker, M., and J. Wurgler. 2002. “Market Timing and Capital Structure.” Journal of Finance 57: 1–32.CrossrefWeb of ScienceGoogle Scholar

  • Barberis, N., and R. Thaler. 2005. “A Survey of Behavioral Finance.” In Advances in Behavioral Finance, Volume II, edited by R. Thaler, New York: Princeton University Press.Google Scholar

  • Blundell, R., R. Griffith, and F. A. G. Windmeijer. 2002. “Individual Effects and Dynamics in Count Data Models.” Journal of Econometrics 108: 113–131.CrossrefGoogle Scholar

  • Bradley, M., G. A. Jarrell, and E. H. Kim. 1984. “On the Existence of an Optimal Capital Structure: Theory and Evidence.” Journal of Finance 39: 857–878.CrossrefGoogle Scholar

  • Chamberlain, G. 1992. “Comment: Sequential Moment Restrictions in Panel Data.” Journal of Business and Economic Statistics 10 (1): 20–26.Google Scholar

  • Dhaene, G. and K. Jochmans. 2015. “Profile-Score Adjustments for Incidental-Parameter Problems”, mimeo.Google Scholar

  • Elsas, R., and D. Florysiak. 2015. “Dynamic Capital Structure Adjustment and the Impact of Fractional Dependent Variables.” Journal of Financial and Quantitative Analysis, 50 (5): 1105–1133.Web of ScienceCrossrefGoogle Scholar

  • Graham, J. R., and C. R. Harvey. 2001. “The Theory and Practice of Corporate Finance: Evidence from the Field.” Journal of Financial Economics 60: 187–243.CrossrefGoogle Scholar

  • Harris, M., and A. Raviv. 1991. “The Theory of Capital Structure.” Journal of Finance 46: 297–355.Web of ScienceCrossrefGoogle Scholar

  • Hansen, L. P. 1982. “Large Sample Properties of Generalised Method of Moments Estimators.” Econometrica 50 (4): 1029–1054.CrossrefGoogle Scholar

  • Hausman, J. A., and G. K. Leonard. 1997. “Superstars in the National Basketball Association: economic Value and Policy.” Journal of Labor Economics 15 (4): 586–624.CrossrefGoogle Scholar

  • Heckman, J. J. 2000. “Causal Parameters and Policy Analysis in Economics: A Twentieth Century Retrospective.” Quarterly Journal of Economics 115 (1): 45–97.CrossrefGoogle Scholar

  • Heckman, J. J. 2001. “Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture.” Journal of Political Economy 109: 673–748.CrossrefGoogle Scholar

  • Kayhan, A., and S. Titman. 2004. “Firms’ Histories and their Capital Structures.” Louisiana State University and University of Texas, Working paper.Google Scholar

  • Kraus, A. and R. H. Litzenberger. 1973. “A State-Preference Model of Optimal Financial Leverage.” Journal of Finance 28: 911–922.CrossrefGoogle Scholar

  • Korajczyk, R. A., D. J. Lucas, and R. L. McDonald. 1992. “Equity Issues with Time-Varying Asymmetric Information.” Journal of Financial and Quantitative Analysis 27: 397–417.CrossrefGoogle Scholar

  • Leary, M., and M. R. Roberts. 2005. “Do Firms Rebalance their Capital Structures?.” Journal of Finance 60: 2575–2619.CrossrefGoogle Scholar

  • Loudermilk, M. S. 2007. “Estimation of Fractional Dependent Variables in Dynamic Panel Data Models with an Application to Firm Dividend Policy.” Journal of Business and Economic Statistics 25 (4): 462–472.CrossrefWeb of ScienceGoogle Scholar

  • Lucas, D. J., and R. L. McDonald. 1990. “Equity Issues and Stock Price Dynamics.” Journal of Finance 45: 1019–1043.CrossrefGoogle Scholar

  • Modigliani, F., and M. H. Miller. 1958. “The Cost of Capital, Corporation Finance and the Theory of Investment.” American Economic Review 48: 261–297.Google Scholar

  • Mullahy, J. 1997. “Instrumental-Variable Estimation of Count Data Models: Applications to Models of Cigarette Smoking Bahavior.” Review of Economics and Statistics 79 (4): 586–593.CrossrefGoogle Scholar

  • Myers, S. C. 1984. “The Capital Structure Puzzle.” Journal of Finance 39: 574–592.CrossrefGoogle Scholar

  • Myers, S. C., and N. S. Majluf. 1984. “Corporate Financing and Investment Decisions when Firms have Information that Investors do not have.” Journal of Financial Economics 13: 187–221.CrossrefGoogle Scholar

  • Ospina, R., and S. L. P. Ferrari. 2012. “A General Class of Zero-Or-One Inflated Beta Regression Models.” Computational Statistics and Data Analysis 56 (6): 1609–1623.Web of ScienceCrossrefGoogle Scholar

  • Papke, L. E., and J. M. Wooldridge. 1996. “Econometric Methods for Fractional Response Variables with an Application to 401(k) Plan Participation Rates.” Journal of Applied Econometrics 11 (6): 619–632.CrossrefGoogle Scholar

  • Papke, L., and J. Wooldridge. 2008. “Panel Data Methods for Fractional Response Variables with an Application to Test Pass Rates.” Journal of Econometrics 145 (1–2): 121–133.Web of ScienceCrossrefGoogle Scholar

  • Ramalho, E. A., and J. J. S. Ramalho. 2016. “Moment-Based Estimation of Nonlinear Regression Models with Boundary Outcomes and Endogeneity, with Applications to Nonnegative and Fractional Responses.” Econometric Reviews forthcoming (DOI: ).CrossrefWeb of ScienceGoogle Scholar

  • Ramalho, E. A., J. J. S. Ramalho, and P. D. Henriques. 2010. “Fractional Regression Models for Second Stage DEA Efficiency Analyses.” Journal of Productivity Analysis 34 (3): 239–255.CrossrefWeb of ScienceGoogle Scholar

  • Ramalho, E. A., J. J. S. Ramalho, and J. M. R. Murteira. 2011. “Alternative Estimating and Testing Empirical Strategies for Fractional Regression Models.” Journal of Economic Surveys 25 (1): 19–68.Web of ScienceCrossrefGoogle Scholar

  • Ramalho, J. J. S., and J. V. Silva. 2009. “A Two-Part Fractional Regression Model for the Financial Leverage Decisions of Micro, Small, Medium and Large Firms.” Quantitative Finance 9 (5): 621–636.CrossrefWeb of ScienceGoogle Scholar

  • Ramalho, J. J. S., and J. V. Silva. 2013. “Functional Form Issues in the Regression Analysis of Corporate Capital Structure.” Empirical Economics 44 (2): 799–831.CrossrefGoogle Scholar

  • Santos Silva, J. M. C., and S. Tenreyro. 2006. “The Log of Gravity.” Review of Economics and Statistics 88 (4): 641–658.CrossrefGoogle Scholar

  • Windmeijer, F. 2000. “Moment Conditions for Fixed Effects Count Data Models with Endogenous Regressors.” Economics Letters 68 (1): 21–24.CrossrefGoogle Scholar

  • Windmeijer, F. 2008. “GMM for Panel Count Data Models.” In The Econometrics of Panel Data, edited by L. Mátyás, and P. Sevestre, 3rd ed. Advanced Studies in Theoretical and Applied Econometrics vol. 46, 603–624. Berlin: Springer.Google Scholar

  • Windmeijer, F. A. G., and J. M. C. Santos Silva. 1997. “Endogeneity in Count Data Models: An Application to Demand for Health Care.” Journal of Applied Econometrics 12: 281–294.CrossrefGoogle Scholar

  • Wooldridge, J. M. 1997. “Multiplicative Panel Data Models without the Strict Exogeneity Assumption.” Econometric Theory 13: 667–678.CrossrefGoogle Scholar

  • Wooldridge, J. M. 2010. “Correlated Random Effects Models with Unbalanced Panels.” mimeo.Google Scholar

About the article

Published Online: 2016-09-14

Citation Information: Journal of Econometric Methods, Volume 7, Issue 1, 20150019, ISSN (Online) 2156-6674, DOI: https://doi.org/10.1515/jem-2015-0019.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Joaquim JS Ramalho, Rui MS Rita, and Jacinto Vidigal da Silva
International Small Business Journal: Researching Entrepreneurship, 2018, Volume 36, Number 5, Page 574
Alexandre Nicolella and Ana Lucia Kassouf
International Journal of Social Economics, 2018, Volume 45, Number 2, Page 357

Comments (0)

Please log in or register to comment.
Log in