Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Econometric Methods

Ed. by Giacomini, Raffaella / Li, Tong


Mathematical Citation Quotient (MCQ) 2018: 0.06

Online
ISSN
2156-6674
See all formats and pricing
More options …

Regression Discontinuity and Heteroskedasticity Robust Standard Errors: Evidence from a Fixed-Bandwidth Approximation

Otávio BartalottiORCID iD: https://orcid.org/0000-0001-5151-3277
Published Online: 2018-02-21 | DOI: https://doi.org/10.1515/jem-2016-0007

Abstract

In regression discontinuity designs (RD), for a given bandwidth, researchers can estimate standard errors based on different variance formulas obtained under different asymptotic frameworks. In the traditional approach the bandwidth shrinks to zero as sample size increases; alternatively, the bandwidth could be treated as fixed. The main theoretical results for RD rely on the former, while most applications in the literature treat the estimates as parametric, implementing the usual heteroskedasticity-robust standard errors. This paper develops the “fixed-bandwidth” alternative asymptotic theory for RD designs, which sheds light on the connection between both approaches. I provide alternative formulas (approximations) for the bias and variance of common RD estimators, and conditions under which both approximations are equivalent. Simulations document the improvements in test coverage that fixed-bandwidth approximations achieve relative to traditional approximations, especially when there is local heteroskedasticity. Feasible estimators of fixed-bandwidth standard errors are easy to implement and are akin to treating RD estimators as locally parametric, validating the common empirical practice of using heteroskedasticity-robust standard errors in RD settings. Bias mitigation approaches are discussed and a novel bootstrap higher-order bias correction procedure based on the fixed bandwidth asymptotics is suggested.

Keywords: average treatment effect; bias correction; fixed bandwidth; heteroskedasticity robust standard errors; locally parametric inference; local polynomial estimators

JEL Classification: C12; C21

References

  • Andrews, D. 1991. “Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models.” Econometrica 59 (2): 307–345.CrossrefGoogle Scholar

  • Angrist, J., and J. Pischke. 2009. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton, NJ: Princeton University Press.Google Scholar

  • Barreca, A., J. Lindo, and G. Waddell. 2016. “Heaping-Induced Bias in Regression Discontinuity Designs.” Economic Inquiry 54 (1): 268–293.Web of ScienceCrossrefGoogle Scholar

  • Bartalotti, O., and Brummet, Q. 2017. “Regression Discontinuity Designs with Clustered Data.” In Regression discontinuity designs: Theory and applications, 383-420. Emerald Publishing Limited.Google Scholar

  • Bartalotti, O., Q. Brummet, and S. Dieterle. 2017. “A Correction for Regression Discontinuity Designs with Group-Specific Mismeasurement of the Running Variable.” Working Paper, Department of Economics, Iowa State University.Google Scholar

  • Bartalotti, O., G. Calhoun, and Y. He. 2017. “Bootstrap Confidence Intervals for Sharp Regression Discontinuity Designs.” In Regression Discontinuity Designs: Theory and Applications. Advances in Econometrics, Vol. 38, edited by M. Cattaneo and J. Escanciano, 421–453. Bingley: Emerald Publishing.CrossrefGoogle Scholar

  • Bester, C. A., T. G. Conley, C. B. Hansen, and T. J. Vogelsang. 2016. “Fixed-b Asymptotics for Spatially Dependent Robust Nonparametric Covariance Matrix Estimators.” Econometric Theory 32: 154–186.CrossrefWeb of ScienceGoogle Scholar

  • Calonico, S., M. Cattaneo, and M. Farrell. Forthcoming. “On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference.” Journal of the American Statistical Association.Web of ScienceGoogle Scholar

  • Calonico, S., M. Cattaneo, and R. Titiunik. 2014. “Robust Nonparametric Confidence Intervals for Regression Discontinuity Designs.” Econometrica 82 (6): 2295–2326.Web of ScienceCrossrefGoogle Scholar

  • Calonico, S., M. Cattaneo, M. Farrell, and R. Titiunik. 2017. “rdrobust: Software for Regression-Discontinuity Designs.” Stata Journal 17 (2): 372–404.CrossrefWeb of ScienceGoogle Scholar

  • Cattaneo, M., B. Frandsen, and R. Titiunik. 2015. “Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S. Senate.” Journal of Causal Inference 3 (1): 1–24.Web of ScienceCrossrefGoogle Scholar

  • Caughey, D., and J. Sekhon. 2011. “Elections and the Regression Discontinuity Design: Lessons from Close U.S. House Races, 1942–2008.” Political Analysis 19: 385–408.CrossrefWeb of ScienceGoogle Scholar

  • Chen, X., Z. Liao, and Y. Sun. 2014. “Sieve Inference on Possibly Misspecified Semi-nonparametric Time Series Models.” Journal of Econometrics 178 (3): 639–658.CrossrefWeb of ScienceGoogle Scholar

  • Fan, J., and I. Gijbels. 1996. Local Polynomial Modelling and Its Applications. New York, NY: Chapman & Hall.Google Scholar

  • Dong, Y. 2015. “Regression Discontinuity Applications with Rounding Errors in the Running Variable.” Journal of Applied Econometrics 30 (3): 422–446.CrossrefWeb of ScienceGoogle Scholar

  • Fan, Y. 1998. “Goodness-of-Fit Tests Based on Kernel Density Estimators with Fixed Smoothing Parameters.” Econometric Theory 14: 604–621.Google Scholar

  • Hahn, J., P. Todd, and W. van der Klaauw. 1999. “Evaluating the Effect of an Antidiscrimination Law Using a Regression-Discontinuity Design.” NBER Working Paper Series, n. 7131.Google Scholar

  • Hahn, J., P. Todd, and W. van der Klaauw. 2001. “Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design.” Econometrica 69: 201–209.CrossrefGoogle Scholar

  • Hashimzade, N., and T. Vogelsang. 2008. “Fixed-b Asymptotic Approximation of the Sampling Behaviour of Nonparametric Spectral Density Estimators.” Journal of Time Series Analysis 29 (1): 142–162.Web of ScienceGoogle Scholar

  • Imbens, G., and T. Lemieux. 2008. “Regression Discontinuity Designs: A Guide to Practice.” Journal of Econometrics 142 (2): 615–635.CrossrefWeb of ScienceGoogle Scholar

  • Imbens, G., and K. Kalyanaraman. 2012. “Optimal Bandwidth Choice for the Regression Discontinuity Estimator.” Review of Economic Studies 79 (3): 933–959.CrossrefWeb of ScienceGoogle Scholar

  • Kim, M., Y. Sun, and J. Yang. 2017. “A Fixed-Bandwidth View of the Pre-asymptotic Inference for Kernel Smoothing with Time Series Data.” Journal of Econometrics 197 (2): 298–322.Web of ScienceCrossrefGoogle Scholar

  • Lee, D. 2008. “Randomized Experiments from Non-random Selection in U.S. House Elections.” Journal of Econometrics 142 (2): 675–697.CrossrefWeb of ScienceGoogle Scholar

  • Lee, D., and D. Card. 2008. “Regression Discontinuity Inference with Specification Error.” Journal of Econometrics 142 (2): 655–674.Web of ScienceCrossrefGoogle Scholar

  • Lee, D., and T. Lemieux. 2009. “Regression Discontinuity Designs in Economics.” NBER Working Paper Series, n. 14723.Google Scholar

  • Ludwig, J., and D. L. Miller. (2007). “Does Head Start Improve Children’s Life Chances? Evidence from a Regression Discontinuity Design.” The Quarterly journal of economics 122 (1): 159–208.CrossrefGoogle Scholar

  • McCrary, J. 2008. “Manipulation of the Running Variable in the Regression Discontinuity Design: A Density Test.” Journal of Econometrics 142 (2): 698–714.Web of ScienceCrossrefGoogle Scholar

  • Neave, H. 1970. “An Improved Formula for the Asymptotic Variance of Spectrum Estimates.” The Annals of Mathematical Statistics 41: 70–77.CrossrefGoogle Scholar

  • Pagan, A., and A. Ullah. 1999. Nonparametric Econometrics. Cambridge: Cambridge University Press.Google Scholar

  • Porter, J. 2003. “Estimation in the Regression Discontinuity Model.” Unpublished Working Paper. Department of Economics, University of Wisconsin. Manuscript date: May 7, 2003.Google Scholar

  • Ramanathan, R. 1993. Statistical Methods in Econometrics. San Diego, CA: Academic Press.Google Scholar

  • Stock, J., and M. Yogo. 2005. “Asymptotic Distributions of Instrumental Variables Statistics with Many Instruments.” In Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg. 1st ed., edited by D. Andrews and J. Stock, 109–120. Cambridge: Cambridge University Press.Google Scholar

  • Sun, Y. 2014. “Let’s Fix It: Fixed-b Asymptotics Versus Small-b Asymptotics in Heteroskedasticity and Autocorrelation Robust Inference.” Journal of Econometrics 178 (3): 659–677.CrossrefWeb of ScienceGoogle Scholar

  • White, H. 1982. “Maximum Likelihood Estimation of Misspecified Models.” Econometrica 50: 1–24.CrossrefGoogle Scholar

  • White, H. 1996. Estimation Inference and Specification Analysis. Cambridge: Cambridge University Press.Google Scholar

About the article

Published Online: 2018-02-21


Citation Information: Journal of Econometric Methods, Volume 8, Issue 1, 20160007, ISSN (Online) 2156-6674, DOI: https://doi.org/10.1515/jem-2016-0007.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in