Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Group Theory

Editor-in-Chief: Parker, Christopher W. / Wilson, John S.

Managing Editor: Khukhro, Evgenii I. / Kramer, Linus

6 Issues per year


IMPACT FACTOR 2016: 0.457
5-year IMPACT FACTOR: 0.521

CiteScore 2016: 0.53

SCImago Journal Rank (SJR) 2016: 0.673
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Mathematical Citation Quotient (MCQ) 2016: 0.43

Online
ISSN
1435-4446
See all formats and pricing
More options …
Volume 10, Issue 1 (Jan 2007)

Issues

Recognition of the finite almost simple groups PGL2(q) by their spectrum

G. Y Chen / V. D Mazurov / W. J Shi / A. V Vasil'ev / A. Kh Zhurtov
Published Online: 2007-02-12 | DOI: https://doi.org/10.1515/JGT.2007.007

Abstract

1 Introduction

For a finite group G, denote by ω(G) the spectrum of G, i.e., the set of orders of elements in G. This set is closed under divisibility and hence is uniquely determined by the subset μ(G) of elements in ω(G) which are maximal under the divisibility relation.

A group G is said to be recognizable by ω(G) (for short, recognizable) if every finite group H with ω(H) = ω(G) is isomorphic to G. In other words, G is recognizable if h(G) = 1 where h(G) is the number of pairwise non-isomorphic groups H with ω(H) = ω(G). It is known that h(G) = ∞ for every group G that has a non-trivial soluble normal subgroup, and so the recognizability problem is interesting only for groups with trivial soluble radical, and first of all for simple and almost simple groups.

The goal of this paper is to resolve the recognizability problem for the groups PGL2(q), i.e., to find h(PGL2(q)) for all q.

About the article


Received: 2005-10-20

Revised: 2006-02-21

Published Online: 2007-02-12

Published in Print: 2007-01-26


Citation Information: Journal of Group Theory, ISSN (Online) 1435-4446, ISSN (Print) 1433-5883, DOI: https://doi.org/10.1515/JGT.2007.007.

Export Citation

Comments (0)

Please log in or register to comment.
Log in