[1]

D. Benson,
Spin modules for symmetric groups,
J. Lond. Math. Soc. (2) 38 (1988), no. 2, 250–262.
Google Scholar

[2]

C. Bessenrodt and H. Weber,
On *p*-blocks of symmetric and alternating groups with all irreducible Brauer characters of prime power degree,
J. Algebra 320 (2008), no. 6, 2405–2421.
Web of ScienceCrossrefGoogle Scholar

[3]

R. Brauer,
On a conjecture by Nakayama,
Trans. Roy. Soc. Canada. Sect. III. (3) 41 (1947), 11–19.
Google Scholar

[4]

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson,
Atlas of Finite Groups,
Oxford University Press, Oxford, 1985.
Google Scholar

[5]

S. Dolfi,
Large orbits in coprime actions of solvable groups,
Trans. Amer. Math. Soc. 360 (2008), no. 1, 135–152.
CrossrefGoogle Scholar

[6]

A. Espuelas and G. Navarro,
Blocks of small defect,
Proc. Amer. Math. Soc. 114 (1992), no. 4, 881–885.
CrossrefGoogle Scholar

[7]

S. M. Gagola, Jr.,
A character theoretic condition for $F(G)>1$,
Comm. Algebra 33 (2005), no. 5, 1369–1382.
Google Scholar

[8]

S. M. Gagola, Jr. and M. L. Lewis,
A character-theoretic condition characterizing nilpotent groups,
Comm. Algebra 27 (1999), no. 3, 1053–1056.
CrossrefGoogle Scholar

[9]

A. Granville and K. Ono,
Defect zero *p*-blocks for finite simple groups,
Trans. Amer. Math. Soc. 348 (1996), no. 1, 331–347.
CrossrefGoogle Scholar

[10]

Z. Halasi and K. Podoski,
Every coprime linear group admits a base of size two,
Trans. Amer. Math. Soc. 368 (2016), no. 8, 5857–5887.
Google Scholar

[11]

I. M. Isaacs,
Characters of π-separable groups,
J. Algebra 86 (1984), no. 1, 98–128.
CrossrefGoogle Scholar

[12]

I. M. Isaacs,
Characters of solvable groups,
The Arcata Conference on Representations of Finite Groups (Arcata 1986),
Proc. Sympos. Pure Math. 47,
American Mathematical Society, Providence (1987), 103–109.
Google Scholar

[13]

I. M. Isaacs,
The π-character theory of solvable groups,
J. Aust. Math. Soc. Ser. A 57 (1994), no. 1, 81–102.
CrossrefGoogle Scholar

[14]

I. M. Isaacs,
Large orbits in actions of nilpotent groups,
Proc. Amer. Math. Soc. 127 (1999), no. 1, 45–50.
CrossrefGoogle Scholar

[15]

G. James and A. Kerber,
The Representation Theory of the Symmetric Group,
Encyclopedia Math. Appl. 16,
Addison-Wesley, Reading, 1981.
Google Scholar

[16]

M. L. Lewis,
${\mathrm{B}}_{\pi}$-characters and quotients,
preprint (2016), https://arxiv.org/abs/1609.02029.

[17]

A. Moretó and T. R. Wolf,
Orbit sizes, character degrees and Sylow subgroups,
Adv. Math. 184 (2004), no. 1, 18–36.
CrossrefGoogle Scholar

[18]

G. Navarro,
Characters and Blocks of Finite Groups,
London Math. Soc. Lecture Note Ser. 250,
Cambridge University Press, Cambridge, 1998.
Google Scholar

[19]

J. B. Olsson,
Lower defect groups in symmetric groups,
J. Algebra 104 (1986), no. 1, 37–56.
CrossrefGoogle Scholar

[20]

J. B. Olsson,
On the *p*-blocks of symmetric and alternating groups and their covering groups,
J. Algebra 128 (1990), no. 1, 188–213.
CrossrefGoogle Scholar

[21]

G. D. B. Robinson,
On a conjecture by Nakayama,
Trans. Roy. Soc. Canada. Sect. III. (3) 41 (1947), 20–25.
Google Scholar

[22]

E. P. Vdovin,
Regular orbits of solvable linear ${p}^{\prime}$-groups,
Sib. Èlektron. Mat. Izv. 4 (2007), 345–360.
Google Scholar

[23]

T. R. Wolf,
Large orbits of supersolvable linear groups,
J. Algebra 215 (1999), no. 1, 235–247.
CrossrefGoogle Scholar

[24]

The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.5, 2016, http://www.gap-system.org.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.