[1]

R. Blasco-Garcia, C. Martinez-Perez and L. Paris,
Poly-freeness of even Artin groups of FC type,
Groups Geom. Dyn., to appear.
WebÂ ofÂ ScienceGoogleÂ Scholar

[2]

J. Boler and B. Evans,
The free product of residually finite groups amalgamated along retracts is residually finite,
Proc. Amer. Math. Soc. 37 (1973), 50â52.
CrossrefGoogleÂ Scholar

[3]

J. Burillo and A. Martino,
Quasi-potency and cyclic subgroup separability,
J. Algebra 298 (2006), no. 1, 188â207.
CrossrefGoogleÂ Scholar

[4]

R. Charney and M.âW. Davis,
The $K\xe2\x81\u0105(\mathrm{\xcf\x80},1)$-problem for hyperplane complements associated to infinite reflection groups,
J. Amer. Math. Soc. 8 (1995), no. 3, 597â627.
GoogleÂ Scholar

[5]

R. Charney and D. Peifer,
The $K\xe2\x81\u0105(\mathrm{\xcf\x80},1)$-conjecture for the affine braid groups,
Comment. Math. Helv. 78 (2003), no. 3, 584â600.
GoogleÂ Scholar

[6]

A.âM. Cohen and D.âB. Wales,
Linearity of Artin groups of finite type,
Israel J. Math. 131 (2002), 101â123.
CrossrefGoogleÂ Scholar

[7]

J. Crisp,
Injective maps between Artin groups,
Geometric Group Theory Down Under (Canberra 1996),
de Gruyter, Berlin (1999), 119â137.
GoogleÂ Scholar

[8]

F. Digne,
On the linearity of Artin braid groups,
J. Algebra 268 (2003), no. 1, 39â57.
CrossrefGoogleÂ Scholar

[9]

E. Godelle,
Morphismes injectifs entre groupes dâArtinâTits,
Algebr. Geom. Topol. 2 (2002), 519â536.
CrossrefGoogleÂ Scholar

[10]

C.âM. Gordon,
Artin groups, 3-manifolds and coherence,
Bol. Soc. Mat. Mexicana (3) 10 (2004), 193â198.
GoogleÂ Scholar

[11]

K.âW. Gruenberg,
Residual properties of infinite soluble groups,
Proc. London Math. Soc. (3) 7 (1957), 29â62.
GoogleÂ Scholar

[12]

S.âJ. Pride,
On the residual finiteness and other properties of (relative) one-relator groups,
Proc. Amer. Math. Soc. 136 (2008), no. 2, 377â386.
GoogleÂ Scholar

[13]

P. Przytycki and D. T. Wise,
Graph manifolds with boundary are virtually special,
J. Topol. 7 (2014), no. 2, 419â435.
CrossrefWebÂ ofÂ ScienceGoogleÂ Scholar

[14]

H. Van der Lek,
The homotopy type of complex hyperplane complements,
Ph.D. thesis, Nijmegen, 1983.
GoogleÂ Scholar

## CommentsÂ (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.