Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Group Theory

Editor-in-Chief: Parker, Christopher W. / Wilson, John S.

Managing Editor: Khukhro, Evgenii I. / Kramer, Linus

6 Issues per year


IMPACT FACTOR 2016: 0.457
5-year IMPACT FACTOR: 0.521

CiteScore 2016: 0.53

SCImago Journal Rank (SJR) 2016: 0.673
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Mathematical Citation Quotient (MCQ) 2016: 0.43

Online
ISSN
1435-4446
See all formats and pricing
More options …
Ahead of print

Issues

Group varieties not closed under cellular covers and localizations

Daniel Herden / Montakarn Petapirak / José L. Rodríguez
Published Online: 2017-08-17 | DOI: https://doi.org/10.1515/jgth-2017-0021

Abstract

A group homomorphism e:HG is a cellular cover of G if for every homomorphism φ:HG there is a unique homomorphism φ¯:HH such that φ¯e=φ. Group localizations are defined dually. The main purpose of this paper is to establish 20 varieties of groups which are not closed under taking cellular covers. This will use the existence of a special Burnside group of exponent p for a sufficiently large prime p as a key witness. This answers a question raised by Göbel in [12]. Moreover, by using a similar witness argument, we can prove the existence of 20 varieties not closed under localizations. Finally, the existence of 20 varieties of groups neither closed under cellular covers nor under localizations is presented as well.

Dedicated to the memory of Rüdiger Göbel

References

  • [1]

    S. I. Adjan, Infinite irreducible systems of group identities, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 715–734. Google Scholar

  • [2]

    F. R. Beyl and J. Tappe, Group Extensions, Representations, and the Schur Multiplicator, Lecture Notes in Math. 958, Springer, Berlin, 1982. Google Scholar

  • [3]

    W. Burnside, On an unsettled question in the theory of discontinuous groups, Quart. J. Pure Appl. Math. 33 (1902), 230–238. Google Scholar

  • [4]

    C. Casacuberta, On structures preserved by idempotent transformations of groups and homotopy types, Crystallographic Groups and Their Generalizations (Kortrijk 1999), Contemp. Math. 262, American Mathematical Society, Providence (2000), 39–68. Google Scholar

  • [5]

    C. Casacuberta, J. L. Rodríguez and J.-Y. Tai, Localizations of abelian Eilenberg–Mac Lane spaces of finite type, Algebr. Geom. Topol. 16 (2016), no. 4, 2379–2420. Google Scholar

  • [6]

    W. Chachólski, E. Damian, E. D. Farjoun and Y. Segev, The A-core and A-cover of a group, J. Algebra 321 (2009), no. 2, 631–666. Google Scholar

  • [7]

    W. Chachólski, E. D. Farjoun, R. Göbel and Y. Segev, Cellular covers of divisible abelian groups, Alpine Perspectives on Algebraic Topology, Contemp. Math. 504, American Mathematical Society, Providence (2009), 77–97. Google Scholar

  • [8]

    E. D. Farjoun, R. Göbel and Y. Segev, Cellular covers of groups, J. Pure Appl. Algebra 208 (2007), no. 1, 61–76. Web of ScienceGoogle Scholar

  • [9]

    E. D. Farjoun, R. Göbel, Y. Segev and S. Shelah, On kernels of cellular covers, Groups Geom. Dyn. 1 (2007), no. 4, 409–419. Google Scholar

  • [10]

    L. Fuchs, Cellular covers of totally ordered abelian groups, Math. Slovaca 61 (2011), no. 3, 429–438. Google Scholar

  • [11]

    L. Fuchs and R. Göbel, Cellular covers of abelian groups, Results Math. 53 (2009), no. 1–2, 59–76. Google Scholar

  • [12]

    R. Göbel, Cellular covers for R-modules and varieties of groups, Forum Math. 24 (2012), no. 2, 317–337. Google Scholar

  • [13]

    R. Göbel, J. L. Rodriguez and S. Shelah, Large localizations of finite simple groups, J. Reine Angew. Math. 550 (2002), 1–24. Google Scholar

  • [14]

    R. Göbel and S. Shelah, Constructing simple groups for localizations, Comm. Algebra 30 (2002), no. 2, 809–837. Google Scholar

  • [15]

    R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules. Volume 1: Approximations, extended ed., De Gruyter Exp. Math. 41, Walter de Gruyter, Berlin, 2012. Google Scholar

  • [16]

    F. Hausdorff, Grundlagen der Mengenlehre, Leipzig, 1914. Google Scholar

  • [17]

    G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monogr. Ser. New Ser. 2, The Clarendon Press, New York, 1987. Google Scholar

  • [18]

    A. G. Kurosh, The Theory of Groups, 2nd ed., Chelsea Publishing, New York, 1960. Google Scholar

  • [19]

    A. Libman, A note on the localization of finite groups, J. Pure Appl. Algebra 148 (2000), no. 3, 271–274. Google Scholar

  • [20]

    B. H. Neumann, Identical relations in groups. I, Math. Ann. 114 (1937), no. 1, 506–525. Google Scholar

  • [21]

    H. Neumann, Varieties of Groups, Springer, New York, 1967. Google Scholar

  • [22]

    P. S. Novikov and S. I. Adjan, Infinite periodic groups. III, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 709–731. Google Scholar

  • [23]

    A. J. Ol’šanskiĭ, The finite basis problem for identities in groups, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 376–384. Google Scholar

  • [24]

    A. Y. Ol’shanskii, The Novikov–Adjan theorem, Mat. Sb. 118 (1982), 203–235. Google Scholar

  • [25]

    A. Y. Ol’shanskii, Geometry of Defining Relations in Groups, Kluwer Academic Publishers, Dordrecht, 1991. Google Scholar

  • [26]

    M. Petapirak, Varieties of groups and cellular covers, PhD thesis, University of Duisburg-Essen, Essen, 2014. Google Scholar

  • [27]

    D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed., Grad. Texts in Math. 80, Springer, New York, 1996. Google Scholar

  • [28]

    J. L. Rodríguez and J. Scherer, Cellular approximations using Moore spaces, Cohomological Methods in Homotopy Theory (Bellaterra 1998), Progr. Math. 196, Birkhäuser, Basel (2001), 357–374. Google Scholar

  • [29]

    J. L. Rodríguez and L. Strüngmann, On cellular covers with free kernels, Mediterr. J. Math. 9 (2012), no. 2, 295–304. Google Scholar

  • [30]

    M. R. Vaughan-Lee, Uncountably many varieties of groups, Bull. Lond. Math. Soc. 2 (1970), 280–286. CrossrefGoogle Scholar

About the article


Received: 2017-02-21

Published Online: 2017-08-17


Funding Source: Ministerio de Economía y Competitividad

Award identifier / Grant number: MTM2013-42178-P

Award identifier / Grant number: MTM2016-76453-C2-2-P

Funding Source: Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía

Award identifier / Grant number: FQM-213

The third named author was supported by project MTM2013-42178-P, funded by the Spanish Ministry of Economy and Competitiveness, A EI/FEDER grant MTM2016-76453-C2-2-P, and by the Junta de Andalucía Grant FQM-213.


Citation Information: Journal of Group Theory, ISSN (Online) 1435-4446, ISSN (Print) 1433-5883, DOI: https://doi.org/10.1515/jgth-2017-0021.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in