Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Group Theory

Editor-in-Chief: Parker, Christopher W.

Managing Editor: Wilson, John S. / Khukhro, Evgenii I. / Kramer, Linus

6 Issues per year


IMPACT FACTOR 2017: 0.581

CiteScore 2017: 0.53

SCImago Journal Rank (SJR) 2017: 0.778
Source Normalized Impact per Paper (SNIP) 2017: 0.893

Mathematical Citation Quotient (MCQ) 2017: 0.45

Online
ISSN
1435-4446
See all formats and pricing
More options …
Ahead of print

Issues

Generalizing Baer’s norm

Mark L. Lewis / M. Zarrin
Published Online: 2018-08-08 | DOI: https://doi.org/10.1515/jgth-2018-0031

Abstract

Let G be a group and n a positive integer. We define Bn(G) to be the intersection of the normalizers of all the non-n-subnormal subgroups of G. We give a new characterization for nilpotent groups in terms of a series defined via Bn(G).

References

  • [1]

    R. Baer, Der Kern, eine charakteristische Untergruppe, Compos. Math. 1 (1935), 254–283. Google Scholar

  • [2]

    R. Baer, Gruppen mit hamiltonschem Kern, Compos. Math. 2 (1935), 241–246. Google Scholar

  • [3]

    R. Baer, Group elements of prime power index, Trans. Amer. Math. Soc. 75 (1953), 20–47. CrossrefGoogle Scholar

  • [4]

    Y. Berkovich, Alternate proof of the Reinhold Baer theorem on 2-groups with nonabelian norm, Glas. Mat. Ser. III 47(67) (2012), no. 1, 149–152. Google Scholar

  • [5]

    B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss. 134, Springer, Berlin, 1967. Google Scholar

  • [6]

    J. E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra 2 (1965), 402–412. CrossrefGoogle Scholar

  • [7]

    M. Zarrin, Non-subnormal subgroups of groups, J. Pure Appl. Algebra 217 (2013), no. 5, 851–853. Web of ScienceCrossrefGoogle Scholar

About the article


Received: 2018-04-08

Revised: 2018-07-22

Published Online: 2018-08-08


Citation Information: Journal of Group Theory, ISSN (Online) 1435-4446, ISSN (Print) 1433-5883, DOI: https://doi.org/10.1515/jgth-2018-0031.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in