Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Homeland Security and Emergency Management

Editor-in-Chief: Renda-Tanali, Irmak, D.Sc.

Managing Editor: McGee, Sibel, Ph.D.

4 Issues per year


IMPACT FACTOR 2016: 0.474
5-year IMPACT FACTOR: 0.627

CiteScore 2017: 0.92

SCImago Journal Rank (SJR) 2017: 0.242
Source Normalized Impact per Paper (SNIP) 2017: 0.615

Online
ISSN
1547-7355
See all formats and pricing
More options …

A Systems-Of-Systems Conceptual Model and Live Virtual Constructive Simulation Framework for Improved Nuclear Disaster Emergency Preparedness, Response, and Mitigation

Matthew Davis
  • Corresponding author
  • University of Central Florida – Industrial Engineering and Management Systems, Orlando, FL, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Proctor
  • University of Central Florida – Industrial Engineering and Management Systems, Orlando, FL, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Buder Shageer
  • University of Central Florida – Industrial Engineering and Management Systems, Orlando, FL, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-29 | DOI: https://doi.org/10.1515/jhsem-2015-0051

Abstract

Nuclear disasters have severe and far-reaching consequences. Emergency managers and first responders from utility owners to local, state, and federal civil authorities and the Department of Defense (DoD) must be well prepared in order to rapidly mitigate the disaster and protect the public and environment from spreading damage. Given the high risks, modeling and simulation (M&S) plays a significant role in planning and training for the spectrum of derivate scenarios. Existing reactor models are largely legacy, stove-piped designs lacking interoperability between themselves and other M&S tools for emergency preparedness system evaluation and training. Unmanned systems present a growing area of technology promising significant improvement in response and mitigation. To bridge the gap between current and future models, we propose a conceptual model (CM) for integrating live, virtual, and constructive (LVC) models with nuclear disaster and mitigation models utilizing a system-of-systems (SoS) approach. The CM offers to synergistically enhance current reactor and dispersion simulations with intervening avatar and agent simulations. The SoS approach advances life cycle stages including concept exploration, system design, engineering, training, and mission rehearsal. Component subsystems of the CM are described along with an explanation of input/output requirements. A notional implementation is described. Finally, applications to analysis and training, an evaluation of the CM based on recently proposed criteria found in the literature, and suggestions for future research are discussed.

Keywords: analysis; incident management; interoperability; nuclear emergency planning; simulation; system of systems; systems engineering; training; unmanned system

References

  • Adalja, Amesh A., Tara Kirk Sell, Sanjana J. Ravi, Katie Minton and Ryan Morhard (2015) “Emergency Preparedness in the 10-Mile Emergency Planning Zone Surrounding Nuclear Power Plants,” Journal of Homeland Security and Emergency Management, 12(1):81–100.Google Scholar

  • Ai-Omari, M. A. R., M. A. Jaradat and M. Jarrah (2013) “Integrated Simulation Platform for Indoor Quadrotor Applications,” 9th International Symposium on Mechatronics and its Applications (ISMA) 9–11 April 2013.Google Scholar

  • Alexis, K., G. Nikolakopoulos, A. Tzes and L Dritsas (2009) Coordination of Helicopter UAVs for Aerial Forest-Fire Surveillance, Applications of Intelligent Control to Engineering Systems. Springer.Google Scholar

  • Alver, Yucel, Murat Ozdogan and Enver Yucesan (2012) “Assessing the Robustness of UAV Assignments.” 2012 Winter Simulation Conference (WSC), 1/1/2012.Google Scholar

  • ANS (2012) “Status of Spent Fuel in the Unit 1 Through 6 and Common Spent-Fuel Pools at the Fukushima Daiichi Nuclear Power Station.” In Fukushima Daiichi: ANS Committee Report, Appendix G. American Nuclear Society Special Committee on Fukushima.Google Scholar

  • Baker, Jean (2012) Capabilities Report 2012 West Desert Test Center. http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA559993: Dugway Proving Ground.

  • Bernard, Markus, Konstantin Kondak and Günter Hommel (2008) “A Slung Load Transportation System Based on Small Size Helicopters.” In: Autonomous Systems–Self-Organization, Management, and Control. Springer, pp. 49–61.Google Scholar

  • Brantley, Mark W., Willie J. McFadden and Mark J. Davis (2002) “Expanding the Trade Space: An Analysis of Requirements Tradeoffs Affecting System Design. (Tutorial).” Acquisition Review Quarterly, (1):1.Google Scholar

  • Campbell, S., M. Abu-Tair and W. Naeem (2014) “An Automatic COLREGS-Compliant Obstacle Avoidance System for an Unmanned Surface Vehicle,” Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Environment, 228(2):108–121.Google Scholar

  • Çelik, Turgay, Göktuğ F. Gökdoğan, Karahan Öztürk and Bircan Sarikaya (2013) “An HLA-Based Tactical Environment Application Framework,” The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 10(3):217–233.Google Scholar

  • Chaimatanan, Supatcha, Daniel Delahaye and Marcel Mongeau (2013) “Strategic Deconfliction of Aircraft Trajectories.” 2nd International Conference on Interdisciplinary Science for Innovative Air Traffic Management, Toulouse, France, July 2013.Google Scholar

  • Chang, Joseph C., Steven R. Hanna, Zafer Boybeyi and Pasquale Franzese (2005) “Use of Salt Lake City URBAN 2000 Field Data to Evaluate the Urban Hazard Prediction Assessment Capability (HPAC) Dispersion Model,” Journal of Applied Meteorology, 44(4):485–501.CrossrefGoogle Scholar

  • Collins, T. E. and G. Hubbard (2001) Technical Study of Spent Fuel Pool Accident Risk at Decommissioning Nuclear Power Plants. In NUREG-1738: Nuclear Regulatory Commission.Google Scholar

  • Covelli, Javier M., Jannick P. Rolland, Michael Proctor, J. Peter Kincaid and P. A. Hancock (2010) “Field of View Effects on Pilot Performance in Flight,” The International Journal of Aviation Psychology, 20(2):197–219.CrossrefGoogle Scholar

  • Darnowski, Piotr, Eleonora Skrzypek, Piotr Mazgaj, Konrad Świrski and Pascal Gandrille (2015) “Total Loss of AC Power Analysis for EPR Reactor,” Nuclear Engineering & Design, 289:8–18.Google Scholar

  • Davis, Paul K. and Robert H. Anderson (2004) “Improving the Composability of DoD Models and Simulations,” Journal of Defense Modeling & Simulation, 1(1):5–17.Google Scholar

  • Davis, Paul K. and A. Tolk (2007) “Observations on New Developments in Composability and Multi-Resolution Modeling.” Winter Simulation Conference, 9–12 Dec. 2007.Google Scholar

  • Deverell, E (2012) “Investigating the Roots of Crisis Management Studies and Outlining Future Trajectories for the Field,” Journal of Homeland Security and Emergency Management, 9(1):2.Google Scholar

  • DHS (2015) National Preparedness Goal. http://www.fema.gov/media-library-data/1443799615171-2aae90be55041740f97e8532fc680d40/National_Preparedness_Goal_2nd_Edition.pdf: Department of Homeland Security.

  • DoD (2013) “DOD 3150.08-M “Nuclear Weapon Accident Response Procedures” (NARP) Internet Supplement.” Department of Defense. http://www.acq.osd.mil/ncbdp/narp/Radiation_Data/Specialized_Radiological.htm.

  • DOE (2015) “Energy Technology Engineering Center Closure Project: The SRE Accident.” Accessed 3 June 2015. http://etec.energy.gov/Operations/Major_Operations/SRE_Accident.html.

  • Ellis, Christopher, Pavel Babenko and Brian Goldiez (2010) “Dynamic Terrain for Multiuser Real-Time Environments,” IEEE Computer Graphics & Applications, 30(1):80–84.Google Scholar

  • EPA (2011) “Radiation Monitors Continue to Confirm That No Radiation Levels of Concern Have Reached the United States.” [Press Release]. EPA. http://yosemite.epa.gov/opa/admpress.nsf/d0cf6618525a9efb85257359003fb69d/3724de8571e1b03f8525785c00041a7a%21OpenDocument.

  • FEMA (2014) Response Federal Interagency Operational Plan. https://www.fema.gov/media-library-data/1406719953589-4ab5bfa40fe82879611d945dd60230c4/Response_FIOP_FINAL_20140729.pdf: Department of Homeland Security.

  • Fernandez-Moguel, L. and J. Birchley (2015) “Analysis of the Accident in the Fukushima Daiichi Nuclear Power Station Unit 3 with MELCOR_2.1,” Annals of Nuclear Energy, 83:193–215.CrossrefGoogle Scholar

  • Fernandez-Moguel, Leticia (2015) “Comparative Assessment of PSI Air Oxidation Model Implementation in SCDAPSim3.5, MELCOR 1.8.6 and MELCOR 2.1,” Annals of Nuclear Energy, 81:134–142.Google Scholar

  • Fisher, David A (2006) An Emergent Perspective on Interoperation in Systems of Systems. http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA449020: Carnegie Mellon Software Engineering Institute.

  • Flint, M., E. Fernandez and W. D. Kelton (2009) “Simulation Analysis for UAV Search Algorithm Design Using Approximate Dynamic Programming,” Military Operations Research, 14(2):41–50.CrossrefGoogle Scholar

  • Gaffney, Helen and Alasdair Vincent (2011) “Modeling Information Operations in a Tactical-level Stabilization Environment,” Journal of Defense Modeling & Simulation, 8(2):105.Google Scholar

  • Girault, N., L. Bosland and J. Dienstbier (2010) “LWR Severe Accident Simulation Fission Product Behavior in FPT2 Experiment,” Nuclear Technology, 169(3):218–238.Google Scholar

  • Graniela, Benito and Michael D. Proctor (2012) “A Network-Centric Terrain Database Regeneration Architecture,” The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 10(3):247–261.Google Scholar

  • Green, Chris, Bruce C. Leibrecht, Jeffrey E. Fite (2011) After Action Review Guide for Trainers of Virtual Battlespace-2 Missions. http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA548308: United States Army Research Institute for the Behavioral and Social Sciences.

  • Hamilton, John A. (2006) “A Conceptual Model for Interoperable Command and Control Acquisition,” Journal of Defense Modeling & Simulation, 3(2):125–138.Google Scholar

  • Hanna, Steven and Joseph Chang (2015) “Skyscraper Rooftop Tracer Concentration Observations in Manhattan and Comparisons with Urban Dispersion Models,” Atmospheric Environment, 106(2015):215–222.CrossrefGoogle Scholar

  • Heffelfinger, David G., Craig M. Tuckett and Jeffrey R. Ryan (2013) “The Military’s Response to Domestic CBRNE Incidents,” Journal of Homeland Security and Emergency Management, 10(1):57–75.Google Scholar

  • Hill, Alexander (2003) Using the Hazard Prediction and Assessment Capability (HPAC) Hazard Assessment Program for Radiological Scenarios Relevant to the Australian Defence Force. http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA416823: DSTO Platforms Sciences Laboratory.

  • Hodson, Douglas D. and Raymond R. Hill (2014) “The Art and Science of Live, Virtual, and Constructive Simulation for Test and Analysis,” Journal of Defense Modeling & Simulation, 11(2):77–89.Google Scholar

  • Hodson, Douglas D., Bruce L. Esken, Alex J. Gutman and Raymond R. Hill (2014) “Quantifying Radar Measurement Errors in a Live–Virtual–Constructive Environment to Determine System Viability: A Case Study,” Journal of Defense Modeling & Simulation, 11(2):115–124.Google Scholar

  • Holden, Trevor and Charles Dickerson (2013) “A ROSETTA Framework for Live/Synthetic Aviation Tradeoffs: Preliminary Report,” Proceedings of the 2013 8th International Conference on System of Systems Engineering, 218–223. doi: .CrossrefGoogle Scholar

  • Hollenbach, James W. and William L. Alexander (1997) “Executing the DoD Modeling and Simulation Strategy – Making Simulation Systems of Systems a Reality,” Proceedings of the 29th Winter Simulation Conference, 948–954. doi: .CrossrefGoogle Scholar

  • Hsu, Jeremy (11/2014) “The Weight Of War,” Popular Science, 285(5):60–65.Google Scholar

  • Hu, Liang, Yapei Zhang, Longze Li, G. H. Su, Wenxi Tian and Suizheng Qiu (2015). “Investigation of Severe Accident Scenario of PWR Response to LOCA Along with SBO,” Progress in Nuclear Energy, 83(2015):159–166.CrossrefGoogle Scholar

  • Ianovsky, Edward and Joseph Kreimer (2011) “An Optimal Routing Policy for Unmanned Aerial Vehicles (Analytical and Cross-Entropy Simulation Approach),” Annals of Operations Research, 189(1):215–253.CrossrefGoogle Scholar

  • IEEE (2010) IEEE Standard for Modeling and Simulation (M\&S) High Level Architecture (HLA)– Framework and Rules. In IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000). doi: .CrossrefGoogle Scholar

  • IEEE (2012) IEEE Standard for Distributed Interactive Simulation–Application Protocols. In IEEE Std 1278.1-2012 (Revision of IEEE Std 1278.1-1995). doi: .CrossrefGoogle Scholar

  • INNG (2015) Vibrant Response Q and A. http://www.atterburymuscatatuck.in.ng.mil/Portals/18/PageContents/Training/JE/Q_and_A.pdf: Indiana Army National Guard.

  • Jain, Sanjay and Charles R. McLean (2006) “An Integrating Framework for Modeling and Simulation for Incident Management,” Journal of Homeland Security and Emergency Management, 3(1):1–5.Google Scholar

  • Japan, National Diet of (2012) Act for Establishment of the Nuclear Regulation Authority. In Act No. 47, edited by National Diet of Japan. https://www.nsr.go.jp/data/000067231.pdf: Organisation for Economic Cooperation & Development.

  • Johnson, Thomas (2006) The Battle of Chernobyl. http://icarusfilms.com/new2007/batt.html: Icarus FIlms. Film.

  • Jones, Michael C. (2015) “Composability.” In: (Larry B. Rainey and Andreas Tolk, eds.) Modeling and Simulation Support for System of Systems Engineering Applications. Hoboken, New Jersey: Wiley, pp. 45–73.Google Scholar

  • JTF-CS (2015a) JTF-CS 101 Brief v5.5. edited by Department of Defense. http://www.jtfcs.northcom.mil/Documents/JTF-CS 101 Brief v5.5 (28 APR 2015).pdf: Joint Task Force Civil Support.

  • JTF-CS (2015b) “JTFCS Operational Focus.” US Northern Command Accessed 30 April. http://www.jtfcs.northcom.mil/OperationalFocus.aspx.

  • Kasputis, S. and H. C. Ng (2000) “Composable Simulations,” Proceedings of the 2000 Winter Simulation Conference, 2:1577–1584.Google Scholar

  • Law, Averill M. and W. David Kelton (2000) Simulation Modeling and Analysis. 3rd ed, McGraw-Hill Series in Industrial Engineering and Management Science. Boston: McGraw-Hill. Bibliographies; Non-fiction.Google Scholar

  • Lee, Ronald W. (2002) Moving the Hazard Prediction and Assessment Capability to a Distributed, Portable Architecture. ORNL Oak Ridge National Laboratory (US). doi: .CrossrefGoogle Scholar

  • Liang, Wei, S. N. Lam Nina, Xiaojun Qin and Wenxue Ju (2015) “A Two-Level Agent-Based Model for Hurricane Evacuation in New Orleans,” Journal of Homeland Security and Emergency Management, 12(2):407–435.Google Scholar

  • Liu, X. F., Z. W. Guan, Y. Q. Song, and D. S. Chen (2014) “An Optimization Model of UAV Route Planning for Road Segment Surveillance,” Journal of Central South University, 21(6):2501–2510.Google Scholar

  • MacFarlane, J. W., O. D. Payton, A. C. Keatley, G. P. T. Scott, H. Pullin, R. A. Crane, M. Smilion, I. Popescu, V. Curlea and T. B. Scott (2014) “Lightweight Aerial Vehicles for Monitoring, Assessment and Mapping of Radiation Anomalies,” Journal of Environmental Radioactivity, 136(2014):127–130.CrossrefGoogle Scholar

  • Maier, Mark W. (1998) “Architecting Principles for Systems-of-Systems,” Systems Engineering, 1(4):267–284.CrossrefGoogle Scholar

  • Marconi, L., C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart, S. Leutenegger, R. Carloni, S. Stramigioli, H. Bruyninckx, P. Doherty, A. Kleiner, V. Lippiello, A. Finzi, B. Siciliano, A. Sala and N. Tomatis (2012) “The SHERPA Project: Smart Collaboration Between Humans and Ground-Aerial Robots for Improving Rescuing Activities in Alpine Environments,” 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR):1–4. doi: .CrossrefGoogle Scholar

  • Mase, Kenichi (2013) “Wide-Area Disaster Surveillance Using Electric Vehicles and Helicopters,” 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC):3466–3471. doi: .CrossrefGoogle Scholar

  • Mase, Kenichi (2015) “Wide Area Surveillance Using Electric Vehicles and Limited-Flying-Time Helicopters,” Sensors & Transducers, 185(2):84–92.Google Scholar

  • McGonigle, A. J. S., A. Aiuppa, G. Giudice, G. Tamburello, A. J. Hodson and S. Gurrieri (2008) “Unmanned Aerial Vehicle Measurements of Volcanic Carbon Dioxide Fluxes,” Geophysical Research Letters, 35(6):1–4.CrossrefGoogle Scholar

  • McLean, Thom, Richard Fujimoto and Brad Fitzgibbons (2004) “Middleware for Real-Time Distributed Simulations,” Concurrency & Computation: Practice & Experience, 16(15):1483–1501.Google Scholar

  • McLean, Charles R, Sanjay Jain, Y Tina Lee and Guodong Shao (2007) An Integrated Simulation Environment For Incident Management Training. http://www.nist.gov/manuscript-publication-search.cfm?pub_id=822742: National Institute of Standards and Technology.

  • Meliza, Larry L., Stephen L. Goldberg, Donald R. Lampton (2007) After Action Review in Simulation-Based Training. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA474305: U.S. Army Research Institute for the Behavioral and Social Sciences.

  • Miller, C., A. Cubbage, D. Dorman, J. Grobe, G. Holahan, N. Sanfilippo (2011) Recommendations for Enhancing Reactor Safety in the 21st Century. http://pbadupws.nrc.gov/docs/ML1118/ML111861807.pdf: Nuclear Regulatory Commission.

  • Morris, Jeffrey D., Michael R. Grimaila, Douglas D. Hodson, Colin V. McLaughlin and David R. Jacques (2014) “Using the Discrete Event System Specification to Model Quantum Key Distribution System Components,” The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 12(4):457–480.Google Scholar

  • NAWCTSD. 2014. NAWCTSD Research Project Summaries: Fiscal Years 2014-2015. http://www.navair.navy.mil/nawctsd/Programs/Files/NAWCTSD-FY-14-15-Grey-Book.pdf: USN.

  • NRC (2011) Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants: Guidance for Protective Action Strategies. http://purl.fdlp.gov/GPO/gpo54473: Washington, DC: U.S. Nuclear Regulatory Commission, FEMA, [2011] Rev. 1, Supplement 3. Technical reports; Non-fiction; Electronic document.

  • NRC (2012) Order Modifying Licenses with Regard to Reliable Spent Fuel Pool Instrumentation. In EA-12-051, edited by Nuclear Regulatory Commission. http://www.nrc.gov/docs/ML1205/ML12056A044.pdf.

  • NRC (2014a) 2002 Davis-Besse Reactor Pressure Vessel Head Degradation Knowledge Management Digest. http://www.nrc.gov/docs/ML1403/ML14038A119.pdf: Nuclear Regulatory Commission.

  • NRC (2014b) The Browns Ferry Nuclear Plant Fire of 1975 Knowledge Management Digest. http://www.nrc.gov/docs/ML1321/ML13210A179.pdf: Nuclear Regulatory Commission.

  • NRC (2014c) NUREG-1350. edited by Nuclear Regulatory Commission. http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1350/v26/sr1350v26.pdf: NRC.

  • NRC (2015a) “Computer Codes.” Accessed 24 June 2015. http://www.nrc.gov/about-nrc/regulatory/research/safetycodes.html – sac.

  • NRC (2015b) “Operating Reactors.” Nuclear Regulatory Comission, Last Modified 18 Feb, 2015 Accessed 10 April 2015. http://www.nrc.gov/reactors/operating.html.

  • Oikawa, Kiyoshi (2015) Robot Technology for Nuclear Decommissioning of Fukushima Daiichi NPS. http://irid.or.jp/_pdf/20150421_1.pdf: International Research Institute for Nuclear Decommissioning (IRID).

  • OPA (2013a) “Chernobyl Nuclear Power Plant Accident.” Nuclear Regulatory Commission Accessed 24 June 2015. http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/chernobyl-bg.html.

  • OPA (2013b) “Three Mile Island Accident.” Nuclear Regulatory Commission Accessed 10 April 2015. http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html.

  • Ouyang, Jian, Yi Zhuang, Min Lin and Jia Liu (2014) “Optimization of Beamforming and Path Planning for UAV-Assisted Wireless Relay Networks,” Chinese Journal of Aeronautics, 27(2):313–320.CrossrefGoogle Scholar

  • Özhan, Gürkan, Halit Oğuztüzün, and Pinar Evrensel (2008) “Modeling of Field Artillery Tasks with Live Sequence Charts.” Journal of Defense Modeling & Simulation, 5(4):219–252.Google Scholar

  • PB Farradyne, a District of PBQD. 2005. Use of Unmanned Aerial Vehicles in Traffic Surveillance and Traffic Management. http://www.i95coalition.org/wp-content/uploads/2015/03/Report_TechMemo_UAV_FL.pdf: Technical Memorandum Prepared for: Florida Department of Transportation.Google Scholar

  • Peräjärvi, K., J. Lehtinen, R. Pöllänen and H. Toivonen (2008) “Design of an Air Sampler for a Small Unmanned Aerial Vehicle,” Radiation Protection Dosimetry, 132(3):328–333.CrossrefGoogle Scholar

  • Perhinschi, M. G., M. R. Napolitano and S. Tamayo (2010) “Integrated Simulation Environment for Unmanned Autonomous Systems–Towards a Conceptual Framework,” Modelling & Simulation in Engineering, 2010:1–12.Google Scholar

  • Petty, Mikel D., Jungyoon Kim, Salvador E. Barbosa and Jai-Jeong Pyun (2014) “Software Frameworks for Model Composition,” Modelling and Simulation in Engineering, 2014:1–18.Google Scholar

  • Platt, Nathan, William Ross Kimball and Jeffry T. Urban (2014) “The Use of Probabilistic Plume Predictions for the Consequence Assessment of Atmospheric Releases of Hazardous Materials,” International Journal of Environment and Pollution, 55:1–5.Google Scholar

  • Polo-Labarrios, M. A. and G. Espinosa-Paredes (2015) “Comparative Study of the Hydrogen Generation During Short Term Station Blackout (STSBO) in a BWR,” Annals of Nuclear Energy, 83(2015):274–282.CrossrefGoogle Scholar

  • Presagis (2015a) “Helisim.” Presagis Accessed 2 July 2015. http://www.presagis.com/products_services/products/modeling-simulation/simulation/helisim/.

  • Presagis (2015b) “M&S Suite.” Presagis Accessed 2 July 2015. http://www.presagis.com/products_services/products/modeling-simulation/.

  • Pripyat.com (2006) “Chernobyl Disaster: Helicopter crash near Nuclear Power Plant.” [video]. https://youtu.be/8s40uKLCjcU.

  • Proctor, Michael D. and G. Paulo (1996) “Modeling in Support of Operational Testing,” Mathematical and Computer Modelling, 23(1–2):9–14.Google Scholar

  • Proctor, M. D. and P. E. Connors (2000) “Data Representation for Sensor Models Within a Synthetic Natural Environment (SEDRIS),” Transactions of the Society for Computer Simulation International, 17(2):46–53.Google Scholar

  • Proctor, Michael D. and William J. Gerber (2004) “Line-of-Sight Attributes for a Generalized Application Program Interface,” Journal of Defense Modeling & Simulation, 1(1):43–57.Google Scholar

  • Proctor, Michael D., Amy Posey-Macalintal and Dennis Kulonda (2003) “Why the’T’ in SMART: A Constructive Synergy,” Acquisition Review Quarterly, 10(3):284–299.Google Scholar

  • Proctor, Michael D., Michael Panko and Sharlene J. Donovan (2004) “Considerations for Training Team Situation Awareness and Task Performance Through PC-Gamer Simulated Multiship Helicopter Operations,” International Journal of Aviation Psychology, 14(2):191–205.CrossrefGoogle Scholar

  • Proctor, Michael D., Maria Bauer and Thomas Lucario (2007) “Helicopter Flight Training Through Serious Aviation Gaming,” Journal of Defense Modeling & Simulation, 4(3):277–294.Google Scholar

  • Rami, Nabil and Michael D. Proctor (2007) “Real Time Physically-Based Modeling and Simulation of Cratering and Fragmentation of Terrain,” Simulation-Transactions of the Society for Modeling and Simulation International, 83(12):830–842.Google Scholar

  • Robinson, S (2008a) “Conceptual Modelling for Simulation Part I: Definition and Requirements,” Journal of the Operational Research Society, 59(3):278–290.Google Scholar

  • Robinson, S. (2008b) “Conceptual Modelling for Simulation Part II: A Framework for Conceptual Modelling,” Journal of the Operational Research Society, 59(3):291–304.Google Scholar

  • Robinson, Stewart (2010) Conceptual Modeling for Discrete-Event Simulation. Boca Raton: CRC Press. Bibliographies; Non-fiction; Electronic document.Google Scholar

  • Saggiani, G. M. and B. Teodorani (2004) “Rotary Wing UAV Potential Applications: An Analytical Study Through a Matrix Method,” Aircraft Engineering and Aerospace Technology, 76(1):6–14.Google Scholar

  • Sawyer, Taylor L. and Shad Deering (2013) “Adaptation of the US Army’s After-Action Review for Simulation Debriefing in Healthcare,” Simulation in Healthcare-Journal of the Society for Simulation in Healthcare, 8(6):388–397.Google Scholar

  • Sevón, Tuomo (2015) “A MELCOR Model of Fukushima Daiichi Unit 1 Accident,” Annals of Nuclear Energy, 85 (2015):1–11.CrossrefGoogle Scholar

  • Sharma, Sanjay K., Robert Sutton, Amit Motwani and Andy Annamalai (2014) “Non-Linear Control Algorithms for an Unmanned Surface Vehicle,” Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Environment, 228(2):146–155.Google Scholar

  • Sheng, Li, ZhenXin Song, JiangKai Hu, Kai Lü, Hua Tong, Bing Li and QingDang Qiao (2015) “The Comparison of Ensemble or Deterministic Dispersion Modeling on Global Dispersion During Fukushima Dai-ichi Nuclear Accident,” Science China Earth Sciences, 58(3):356–370.CrossrefGoogle Scholar

  • Singh, Ashish, Scott N. Spak, Elizabeth A. Stone, Jared Downard, Robert L. Bullard, Mark Pooley, Pamela A. Kostle, Matthew W. Mainprize, Michael D. Wichman, Thomas M. Peters, Douglas Beardsley and Charles O. Stanier (2015) “Uncontrolled Combustion of Shredded Tires in a Landfill – Part 2: Population Exposure, Public Health Response, and an Air Quality Index for Urban Fires,” Atmospheric Environment, 104(2015):273–283.CrossrefGoogle Scholar

  • Sokolowski, John A., Catherine M. Banks and Brent Morrow (2012) “Using an Agent-Based Model to Explore Troop Surge Strategy,” Journal of Defense Modeling & Simulation, 9(2):173–186.Google Scholar

  • Stephens, Keri K., Ehsan Jafari, Stephen Boyles, L. Ford Jessica and Yaguang Zhu (2015) “Increasing Evacuation Communication Through ICTs: An Agent-Based Model Demonstrating Evacuation Practices and the Resulting Traffic Congestion in the Rush to the Road,” Journal of Homeland Security and Emergency Management, 12(3):497–528.Google Scholar

  • Sugiyama, Gayle (2011) Modeling and Simulation of Hazardous Material Releases for Homeland Security Applications. http://www.nist.gov/el/msid/upload/Hazardous_Material.pdf: DHS.

  • Svec, Petr, Atul Thakur, Erie Raboin, Brual C. Shah and Satyandra K. Gupta (2014) “Target Following with Motion Prediction for Unmanned Surface Vehicle Operating in Cluttered Environments,” Autonomous Robots, 36(4):383–405.CrossrefGoogle Scholar

  • TEPCO (2013) The Development of and Lessons from the Fukushima Daiichi Nuclear Accident. http://www.tepco.co.jp/en/decommision/accident/images/outline01.pdf: Tokyo Electric Power Company.

  • Tolk, Andreas, Saikou Diallo and Charles Turnitsa (2007) “Applying the Levels of Conceptual Interoperability Model in Support of Integratability, Interoperability, and Composability for System-of-Systems Engineering,” Journal of Systemics, Cybernetics and Informatics, 5(5):65–74.Google Scholar

  • Tolk, Andreas and James A. Muguira (2003) “The Levels of Conceptual Interoperability Model,” Proceedings of the 2003 Fall Simulation Interoperability Workshop, 7:1–11.Google Scholar

  • Tomaszewski, Brian, Michael Judex, Joerg Szarzynski, Christine Radestock and Lars Wirkus (2015) “Geographic Information Systems for Disaster Response: A Review,” Journal of Homeland Security and Emergency Management, 12(3):571–602.Google Scholar

  • Towler, Jerry, Bryan Krawiec and Kevin Kochersberger (2012) “Radiation Mapping in Post-Disaster Environments Using an Autonomous Helicopter,” Remote Sensing 4(7):1995–2015.Google Scholar

  • TRMC (2015) “TENA Introductory Material.” TRMC Accessed 1 July 2015. https://www.tena-sda.org/display/intro/Documentation.

  • Ünal, Ömer and Okan Topçu (2014) “Modelling Unmanned Surface Vehicle Patrol Mission with Coalition Battle Management Language (C-BML).” Journal of Defense Modeling & Simulation, 11(3):277–308.Google Scholar

  • UNSCEAR (2000) “Annex J: Exposures and Effects of the Chernobyl Accident.” In UNSCEAR assessments of the Chernobyl accident. http://www.unscear.org/docs/reports/2000/VolumeII_Effects/AnnexJ_pages451-566.pdf: United Nations Scientific Committee on the Effects of Atomic Radiation.

  • UNSCEAR (2014) Levels and Effects of Radiation Exposure Due to the Nuclear Accident After the 2011 Great East-Japan Earthquake and Tsunami. In Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly with Scientific Annexes. http://www.unscear.org/docs/publications/2013/UNSCEAR_2013_Report_Vol.I.pdf: United Nations Scientific Committee on the Effects of Atomic Radiation.

  • USGS (2016) “Earth Explorer.” Dept. of the Interior. http://earthexplorer.usgs.gov/.

  • UTM (2007) “Palm Bay, FL, Deploys Unmanned Air Vehicles.” The Urban Transportation Monitor, 2 Feb 2007, 1, 1. https://trid.trb.org/view.aspx?id=808168.

  • van Blyenburgh, Peter (2000) UAVs – Current Situation and Considerations for the Way Forward. http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADP010752: Defense Technical Information Center.

  • Van Niekerk, Dewald, Christo Coetzee, Doret Botha, John Murphree Michael, Kristel Fourie, Tanya Le Roux, Gideon Wentink, Leandri Kruger, Lesego Shoroma, Kylah Genade, Suna Meyer and E. Annandale (2015) “Planning and Executing Scenario Based Simulation Exercises: Methodological Lessons,” Journal of Homeland Security and Emergency Management, 12(1):193–210.Google Scholar

  • Wang, Te-Chuan, Shih-Jen Wang and Jyh-Tong Teng (2005) “Comparison of Severe Accident Results Among SCDAP/RELAP5, MAAP, and MELCOR Codes,” Nuclear Technology, 150(2):145–152.Google Scholar

  • Wang, Jun, Michael L. Corradini, Wen Fu, Troy Haskin, Yapei Zhang, Wenxi Tian, Guanghui Su and Suizheng Qiu (2015a) “Simulation of the PHEBUS FPT-1 Experiment Using MELCOR and Exploration of the Primary Core Degradation Mechanism,” Annals of Nuclear Energy, 85(2015):193–204.CrossrefGoogle Scholar

  • Wang, Jun, Yapei Zhang, Keyou Mao, Yujia Huang, Wenxi Tian, Guanghui Su and Suizheng Qiu (2015b) “MELCOR Simulation of Core Thermal Response During a Station Blackout Initiated Severe Accident in China Pressurized Reactor (CPR1000).” Progress in Nuclear Energy, 81 (2015):6–15.Google Scholar

  • WNA (2012) “Fukushima: Background on Fuel Pools.” World Nuclear Association, Last Modified Sep. 2012. http://www.world-nuclear.org/info/Safety-and-Security/Safety-of-Plants/Appendices/Fukushima–Fuel-Ponds-Background/.

  • WNA (2015) “Nuclear Database.” World Nuclear Association Accessed 10 April. http://www.world-nuclear.org/NuclearDatabase/rdResults.aspx?id=27569.

  • WSC (2012) WSC Brings Severe Accident Modeling to 3KEYMASTER With MELCOR. https://www.ws-corp.com/wsc08/wsc14/LiveEditor/images/newsletter/2012/index.html: Western Services Corporation.

  • Yilmaz, Levent (2004) “On the Need for Contextualized Introspective Models to Improve Reuse and Composability of Defense Simulations,” Journal of Defense Modeling & Simulation, 1(3):141–151.Google Scholar

  • Zeigler, Bernard P., Tag Gon Kim and Herbert Praehofer (2000) Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems. 2nd ed. San Diego, [Calif.]; London: Academic Press. Bibliographies; Non-fiction.Google Scholar

  • Zittel, Randy C. (2001) “The Reality of Simulation-Based Acquisition – And an Example of U.S. Military Implementation,” Acquisition Review Quarterly, 2001(2):121–132.Google Scholar

About the article

Published Online: 2016-08-29

Published in Print: 2016-09-01


Citation Information: Journal of Homeland Security and Emergency Management, Volume 13, Issue 3, Pages 367–393, ISSN (Online) 1547-7355, ISSN (Print) 2194-6361, DOI: https://doi.org/10.1515/jhsem-2015-0051.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Vanessa Cooper, Giuseppe Forino, Sittimont Kanjanabootra, Jason von Meding, and Corinne Laverty
Journal of Applied Research in Higher Education, 2017, Page 00
[2]
Matthew T. Davis, Michael D. Proctor, and Buder Shageer
Reliability Engineering & System Safety, 2017, Volume 165, Page 368

Comments (0)

Please log in or register to comment.
Log in