[1]

Bitton R. The economic burden of osteoarthritis. Am J Manag Care. 2009;15:S230–5. PubMedGoogle Scholar

[2]

Haubner M, Eckstein F, Schnier M, Lösch A, Sittek H, Becker C, et al. A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI part 2: Validation using CT arthrography. Magn Reson Imaging. 1997;15:805–13. CrossrefPubMedGoogle Scholar

[3]

Mathiesen O, Konradsen L, Torp-Pedersen S, Jorgensen U. Ultrasonography and articular cartilage defects in the knee: an in vitro evaluation of the accuracy of cartilage thickness and defect size assessment. Knee Surg Sport Traumatol Arthrosc. 2004;12:440–3. Google Scholar

[4]

Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sport Phys Ther. 2003;33:677–85. CrossrefGoogle Scholar

[5]

Kladny B, Bail H, Swoboda B, Schiwy-Bochat H, Beyer WF, Weseloh G. Cartilage thickness measurement in magnetic resonance imaging. Osteoarthr Cartil. 1996;4:181–6. CrossrefPubMedGoogle Scholar

[6]

Wyler A, Bousson V, Bergot C, Polivka M, Leveque E, Vicaut E, et al. Comparison of MR-arthrography and CT-arthrography in hyaline cartilage-thickness measurement in radiographically normal cadaver hips with anatomy as gold standard. Osteoarthr Cartil. 2009;17:19–25. PubMedCrossrefGoogle Scholar

[7]

Omoumi P, Michoux N, Roemer FW, Thienpont E, Vande Berg BC. Cartilage thickness at the posterior medial femoral condyle is increased in femorotibial knee osteoarthritis: a cross-sectional CT arthrography study (Part 2). Osteoarthr Cartil. 2015;23:224–31. CrossrefPubMedGoogle Scholar

[8]

Koo S, Gold GE, Andriacchi TP. Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy. Osteoarthr Cartil. 2005;13:782–9. PubMedCrossrefGoogle Scholar

[9]

Li G, Park SE, DeFrate LE, Schutzer ME, Ji L, Gill TJ, et al. The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin Biomech. 2005;20:736–44. CrossrefGoogle Scholar

[10]

Akiyama K, Sakai T, Koyanagi J, Murase T, Yoshikawa H, Sugamoto K. Three-dimensional distribution of articular cartilage thickness in the elderly cadaveric acetabulum: a new method using three-dimensional digitizer and CT. Osteoarthr Cartil. 2010;18:795–802. CrossrefPubMedGoogle Scholar

[11]

Willing R, Lapner M, Lalone EA, King GJW, Johnson JA. Development of a computational technique to measure cartilage contact area. J Biomech. 2014;47:1193–7. CrossrefPubMedWeb of ScienceGoogle Scholar

[12]

Eckstein F, Gavazzeni A, Sittek H, Haubner M, Lösch A, Milz S, et al. Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magn Reson Med. 1996;36:256–65. PubMedCrossrefGoogle Scholar

[13]

Cohen ZA, McCarthy DM, Kwak SD, Legrand P, Fogarasi F, Ciaccio EJ, et al. Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthr Cartil. 1999;7:95–109. PubMedCrossrefGoogle Scholar

[14]

Lösch A, Eckstein F, Haubner M, Englmeier K-H. A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI part 1: Development of a computational method. Magn Reson Imaging. 1997;15:795–804. PubMedCrossrefGoogle Scholar

[15]

Stammberger T, Eckstein F, Englmeier K-H, Reiser M. Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living. Magn Reson Med. 1999;41:529–36. PubMedCrossrefGoogle Scholar

[16]

Eckstein F, Stammberger T, Priebsch J, Englmeier K-H, Reiser M. Effect of gradient and section orientation on quantitative analysis of knee joint cartilage. J Magn Reson Imaging. 2000;11:161–7. PubMedCrossrefGoogle Scholar

[17]

Burgkart R, Glaser C, Hyhlik-Duerr A, Englmeier K-H, Reiser M, Eckstein F. Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis: Accuracy, precision, and diagnostic value. Arthritis Rheum. 2001;44:2072–7. CrossrefPubMedGoogle Scholar

[18]

Eckstein F, Heudorfer L, Faber SC, Burgkart R, Englmeier K-H, Reiser M. Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI). Osteoarthr Cartil. 2002;10:922–8. CrossrefPubMedGoogle Scholar

[19]

Graichen H, Eisenhart-Rothe RV, Vogl T, Englmeier K-H, Eckstein F. Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: Technical validation for use in analysis of cartilage volume and further morphologic parameters. Arthritis Rheum. 2004;50:811–6. PubMedCrossrefGoogle Scholar

[20]

Hardy PA, Nammalwar P, Kuo S. Measuring the thickness of articular cartilage from MR images. J Magn Reson Imaging. 2001;13:120–6. PubMedCrossrefGoogle Scholar

[21]

Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W.. Surface reconstruction from unorganized points. Proceedings of the 19th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’92, New York, NY, USA: ACM Press, 1992;71–8. Google Scholar

[22]

Kauffmann C, Gravel P, Godbout B, Gravel A, Beaudoin G, Raynauld J, et al. Computer-aided method for quantification of cartilage thickness and volume changes using mri: validation study using a synthetic model. IEEE Trans Biomed Eng. 2003;50:978–88. PubMedCrossrefGoogle Scholar

[23]

Raynauld J-P, Kauffmann C, Beaudoin G, Berthiaume M-J, de Guise JA, Bloch DA, et al. Reliability of a quantification imaging system using magnetic resonance images to measure cartilage thickness and volume in human normal and osteoarthritic knees. Osteoarthr Cartil. 2003;11:351–60. PubMedCrossrefGoogle Scholar

[24]

Hildebrand T, Rüegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc. 1997;185:67–75. CrossrefGoogle Scholar

[25]

Xie L, Lin ASP, Levenston ME, Guldberg RE. Quantitative assessment of articular cartilage morphology via EPIC-μCT. Osteoarthr Cartil. 2009;17:313–20. CrossrefGoogle Scholar

[26]

Maerz T, Newton MD, Matthew HWT, Baker KC. Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization. Osteoarthr Cartil. 2016;24:290–8. CrossrefPubMedGoogle Scholar

[27]

Delecourt C, Relier M, Touraine S, Bouhadoun H, Engelke K, Laredo JD, et al. Cartilage morphology assessed by high resolution micro-computed tomography in non OA knees. Osteoarthr Cartil. 2016;24:567–71. CrossrefPubMedGoogle Scholar

[28]

Jones SE, Buchbinder BR, Aharon I. Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum Brain Mapp. 2000;11:12–32. CrossrefPubMedGoogle Scholar

[29]

Haidar H, Egorova S, Soul JS. New numerical solution of the Laplace equation for Tissue Thickness Measurement in Three-Dimensional MRI. J Math Model Algorithms. 2005;4:83–97. CrossrefGoogle Scholar

[30]

Hutton C, De Vita E, Ashburner J, Deichmann R, Turner R. Voxel-based cortical thickness measurements in MRI. Neuroimage. 2008;40:1701–10. Web of SciencePubMedCrossrefGoogle Scholar

[31]

Carballido-Gamio J, Majumdar S. Atlas-based knee cartilage assessment. Magn Reson Med. 2011;66:574–83. Web of SciencePubMedGoogle Scholar

[32]

Cao Q, Thawait G, Gang GJ, Zbijewski W, Reigel T, Brown T, et al. Characterization of 3D joint space morphology using an electrostatic model (with application to osteoarthritis). Phys Med Biol. 2015;60:947–60. CrossrefPubMedWeb of ScienceGoogle Scholar

[33]

Solloway S, Hutchinson CE, Waterton JC, Taylor CJ. The use of active shape models for making thickness measurements of articular cartilage from MR images. Magn Reson Med. 1997;37:943–52. CrossrefGoogle Scholar

[34]

Baniasadipour A, Zoroofi RA, Sato Y, Nishii T, Nakanishi K, Tanaka H, et al.. A fully automated method for segmentation and thickness map estimation of femoral and acetabular cartilages in 3D CT Images of the hip. 2007 5th international symposium on Image and signal processing and analysis, IEEE, 2007;92–7. Google Scholar

[35]

Dam EB, Folkesson J, Pettersen PC, Christiansen C. Automatic morphometric cartilage quantification in the medial tibial plateau from MRI for osteoarthritis grading. Osteoarthr Cartil. 2007;15:808–18. PubMedCrossrefGoogle Scholar

[36]

Liu F, Kozanek M, Hosseini A, Van de Velde SK, Gill TJ, Rubash HE, et al. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech. 2010;43:658–65. CrossrefWeb of SciencePubMedGoogle Scholar

[37]

Maier A, Choi J-H, Keil A, Niebler C, Sarmiento M, Fieselmann A, et al. Analysis of vertical and horizontal circular C-arm trajectories. SPIE Med Imaging. 2011;7961:796123. CrossrefGoogle Scholar

[38]

Müller K, Berger M, Choi JH, Maier A, Fahrig R. Automatic motion estimation and compensation framework for weight-bearing C-arm CT scans using fiducial markers. Springer Verlag, 2015:58–61. IFMBE Proceedings. Google Scholar

[39]

Choi J-H, Fahrig R, Keil A, Besier TF, Pal S, McWalter EJ, et al. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization. Med Phys. 2013;40:091905. Web of ScienceCrossrefPubMedGoogle Scholar

[40]

Choi J-H, Maier A, Keil A, Pal S, McWalter EJ, Beaupré GS, et al. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. II. Experiment. Med Phys. 2014;41:061902. CrossrefWeb of SciencePubMedGoogle Scholar

[41]

Dougherty R, Kunzelmann K-H. Computing Local Thickness of 3D Structures with Image. J. Microsc Microanal. 2007;13:1678–9. Google Scholar

[42]

Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11:36–42. Google Scholar

[43]

Pritzker KPH, Gay S, Jimenez SA, Ostergaard K, Pelletier J-P, Revell PA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil. 2006;14:13–29. CrossrefPubMedGoogle Scholar

## Comments (0)