[1]

Koch I, Reisig W, Schreiber F. Modeling in systems biology. The Petri Net Approach. Springer Science & Business Media, 2010. Google Scholar

[2]

Somekh J, Peleg M, Eran A, Koren I, Feiglin A, Demishtein A, et al. A model-driven methodology for exploring complex disease comorbidities applied to autism spectrum disorder and inflammatory bowel disease. J Biomed Inform. 2016;63:366–78. PubMedWeb of ScienceCrossrefGoogle Scholar

[3]

Xu H, Curtis TY, Powers SJ, Raffan S, Gao R, Huang J, et al. Genomic, biochemical, and modeling analyses of asparagine synthetases from wheat. Front Plant Sci. 2018;8:2013. Web of ScienceGoogle Scholar

[4]

Zechendorf E, Vaßen P, Zhang J, Hallawa A, Martincuks A, Krenkel O, et al. Heparan sulfate induces necroptosis in murine cardiomyocytes: A medical-in silico approach combining in vitro experiments and machine learning. Front Immunol. 2018;9:885. Web of ScienceGoogle Scholar

[5]

Baldan P, Cocco N, Marin A, Simeoni M. Petri nets for modelling metabolic pathways: a survey. Nat Comput. 2010;9:955–89. Web of ScienceCrossrefGoogle Scholar

[6]

Chaouiya C. Petri net modelling of biological networks. Brief Bioinform. 2007;8:210–9. PubMedWeb of ScienceCrossrefGoogle Scholar

[7]

Heiner M, Koch I. Petri net based model validation in systems biology. In: Proc. ICATPN 2004. vol. 3099 of LNCS. Springer, 2004:216–37. Google Scholar

[8]

Sackmann A, Heiner M, Koch I. Application of petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics. 2006;7:482. PubMedCrossrefGoogle Scholar

[9]

Heiner M. Understanding network behaviour by structured representations of transition invariants – a petri net perspective on systems and synthetic biology. In: Condon A, Harel D, Kok J, Salomaa A, Winfree E, editors. *Algorithmic Bioprocesses*, Natural Computing Series. Berlin, Heidelberg: Springer, 2009. p. 367–89. Available from: http://www.springerlink.com/content/m8t30720r141442m.

[10]

Zevedei-Oancea I, Schuster S. Topological analysis of metabolic networks based on petri net theory. In Silico Biology. 2003;3:323–45. PubMedGoogle Scholar

[11]

Koch I. Petri nets in systems biology. SoSyM. 2014;14:703–10. Google Scholar

[12]

Blätke MA, Heiner M, Marwan W. Chapter 7 – BioModel Engineering with Petri Nets. In: Algebraic and Discrete Mathematical Methods for Modern Biology. Boston: Elsevier Inc., 2015:141–93. Google Scholar

[13]

Gilbert D, Heiner M, Lehrack S. A unifying framework for modelling and analysing biochemical pathways using petri nets. In: Computational Methods in Systems Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007:200–16. Google Scholar

[14]

Jensen K, Kirstensen LM. Coloured petri nets: modelling and validation of concurrent systems. Berlin Heidelberg: Springer-Verlag; 2009. Web of ScienceGoogle Scholar

[15]

Gao Q, Gilbert D, Heiner M, Liu F, Maccagnola D, Tree D. Multiscale modelling and analysis of planar cell polarity in the drosophila wing. IEEE/ACM Trans Comput Biol Bioinform. 2013;10:337–51. CrossrefGoogle Scholar

[16]

Liu F, Heiner M, Gilbert D. Coloured petri nets for multi-level, multiscale, and multi-dimensional modelling of biological systems. Brief Bioinform. 2017;bbx150. Google Scholar

[17]

Rohr C, Marwan W, Heiner M. Snoopy – a unifying petri net framework to investigate biomolecular networks. Bioinformatics (Oxford, England). 2010;26:974–5. PubMedCrossrefGoogle Scholar

[18]

Heiner M, Herajy M, Liu F, Rohr C, Schwarick M. Snoopy – A unifying Petri net tool. In: Proc. PETRI NETS 2012. vol. 7347 of LNCS. Springer, 2012:398–407. Google Scholar

[19]

Marwan W, Rohr C, Heiner M. 2012. Petri Nets in Snoopy: A Unifying Framework for the Graphical Display, Computational Modelling, and Simulation of Bacterial Regulatory Networks. In: van Helden J, Toussaint A, Thieffry D, editors. Bacterial Molecular Networks. Methods in Molecular Biology (Methods and Protocols), vol 804. Springer, New York, NY. p. 409–37. Google Scholar

[20]

Heiner M, Schwarick M, Wegener J. Charlie – an extensible Petri net analysis tool. In: Devillers R, Valmari A, editors. Proc. PETRI NETS 2015. vol. 9115 of LNCS. Springer, 2015:200–11. Google Scholar

[21]

Heiner M, Rohr C, Schwarick M. MARCIE – model Checking and reachability analysis done effiCIEntly. In: Colom J, Desel J, editor(s). Proc. PETRI NETS 2013. Vol. 7927 of LNCS. Berlin, Heidelberg: Springer, 2013:389–99. Google Scholar

[22]

Jehrke L. Modulare modellierung und graphische darstellung boolescher netzwerke mit hilfe automatisch erzeugter Petri-netze und ihre simulation am beispiel eines genregulatorischen netzwerkes [Masterthesis]; 2014. Google Scholar

[23]

Soldmann M. Transformation monolithischer SBML-modelle biomolekularer netzwerke in Petri netz module [Masterthesis]; 2014. Google Scholar

[24]

Blätke MA, Rohr C. BioModelKit: spatial modelling of complex multiscale molecular biosystems based on modular models. In: Advances in Biological processes and Petri nets (BioPPN). vol. 160, 1-2 of Fundamenta Informaticae. IOS Press, 2018:221–54. Google Scholar

[25]

Blätke MA, Dittrich A, Rohr C, Heiner M, Schaper F, Marwan W. JAK/STAT signalling – an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems and synthetic biology. Mol Biosyst. 2013;9:1290–307. CrossrefPubMedWeb of ScienceGoogle Scholar

[26]

Cooling MT, Rouilly V, Misirli G, Lawson JR, Yu T, Hallinan J, et al. Standard virtual biological parts: a repository of modular modeling components for synthetic biology. Bioinformatics (Oxford, England). 2010;26:925–31. CrossrefGoogle Scholar

[27]

Lloyd CM, Lawson JR, Hunter PJ, Nielsen PMF. The cellML model repository. Bioinformatics (Oxford, England). 2008;24:2122–3. PubMedCrossrefGoogle Scholar

[28]

Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, et al. BioModels database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol. 2010;4:1. Web of ScienceGoogle Scholar

[29]

King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, et al. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016;44(D1):D515–22. CrossrefPubMedWeb of ScienceGoogle Scholar

[30]

Zhu Q, Wong AK, Krishnan A, Aure MR, Tadych A, Zhang R, et al. Targeted exploration and analysis of large cross-platform human transcriptomic compendia. Nat Methods. 2015;12:211–4. Web of ScienceCrossrefPubMedGoogle Scholar

[31]

Le Novère N, Finney A, Hucka M, Bhalla DUS, Campagne F, Collado-Vides J, et al. Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol. 2005;23:1509–15. PubMedCrossrefGoogle Scholar

[32]

Blätke MA. BioModelKit a framework for modular biomodel-engineering. [Phd Thesis]; 2017. Google Scholar

[33]

Blätke MA, Heiner M, Marwan W. Predicting phenotype from genotype through automatically composed petri nets. In: Proc. 10th International Conference on Computational Methods in Systems Biology (CMSB 2012), London. vol. 7605 of LNCS/LNBI. Springer, 2012:87–106. Google Scholar

[34]

Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, et al. Ensembl 2008. Nucleic Acids Res. 2008;36(Database issue):D707–14. Web of SciencePubMedGoogle Scholar

[35]

Gene Ontology Consortium. The Gene Ontology Project in 2008. Nucleic Acids Res. 2008;36(Database issue):D440–4. Web of SciencePubMedGoogle Scholar

[36]

Blätke MA. Petri-netz modellierung mittels eines modularen und hierarchischen ansatzes mit anwendung auf nozizeptive signalkomponenten. [Diploma Thesis]; 2010. Google Scholar

[37]

Blätke MA, Meyer S, Stein C, Marwan W. Petri net modeling via a modular and hierarchical approach applied to nociception. In: Proc. 1st Int. Workshop on Biological Processes & Petri Nets (BioPPN), satellite event of Petri Nets 2010;2010:135–46. Google Scholar

[38]

Blätke MA, Marwan W. Modular and hierarchical modelling concept for large biological Petri nets applied to nociception. In: Proc. 17th German Workshop on Algorithms and Tools for Petri Nets (AWPN 2010). vol. 643 of CEUR Workshop Proceedings. CEUR-WS.org, 2010:42–50.

[39]

Blätke MA, Meyer S, Marwan W. Pain signaling – a case study of the modular Petri net modeling concept with prospect to a protein-oriented modeling platform. In: Proc. 2nd International Workshop on Biological Processes & Petri Nets (BioPPN), satellite event of Petri NETS 2011. vol. 724 of CEUR Workshop Proceedings. CEUR-WS.org, 2011:117–34.

[40]

Blätke MA, Marwan W. A database-supported modular modelling platform for systems and synthetic biology. In: Proc. 3rd International Workshop on Biological Processes & Petri Nets (BioPPN), satellite event of Petri NETS 2012. vol. 852 of CEUR Workshop Proceedings. CEUR-WS.org, 2012:18–19.

[41]

Blätke MA, Dittrich A, Rohr C, Heiner M, Schaper F, Marwan W. JAK–STAT signalling as example for a database-supported modular modelling concept. In: Proc. 10th International Conference on Computational Methods in Systems Biology (CMSB 2012), London. vol. 7605 of LNCS/LNBI. Springer, 2012:362–5. Google Scholar

[42]

Blätke MA, Rohr C. A Coloured Petri net approach for spatial biomodel engineering based on the modular model composition framework Biomodelkit. In: Proc. 6th Int. Workshop on Biological Processes & Petri Nets (BioPPN 2015), satellite event of Petri Nets 2015. vol. 1373 of CEUR Workshop Proceedings. CEUR-WS.org, 2015:37–54.

[43]

Liu F, Blätke M, Heiner M, Yang M. Modelling and simulating reaction–diffusion systems using coloured Petri nets. Comput Biol Med. 2014;53:297–308.Web of ScienceCrossrefPubMedGoogle Scholar

[44]

Pârvu O, Gilbert D, Heiner M, Liu F, Saunders N, Shaw S. Spatial-temporal modelling and analysis of bacterial colonies with phase variable genes. ACM Trans Model Comput Simul. 2015;25:13–25.Web of ScienceGoogle Scholar

[45]

Liu F, Heiner M. Multiscale modelling of coupled Ca^{2+} channels using coloured stochastic Petri nets. IET Syst Biol. 2013;7:106–13.Web of ScienceCrossrefPubMedGoogle Scholar

[46]

Blätke MA, Rohr C, Heiner M, Marwan W. A Petri-net-based framework for biomodel engineering. In: Large-Scale Networks in Engineering and Life Sciences. Modeling and Simulation in Science, Engineering and Technology. Cham: Springer International Publishing, 2014:317–66.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.