Jump to ContentJump to Main Navigation
Show Summary Details

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.


IMPACT FACTOR increased in 2015: 0.987
Rank 59 out of 312 in category Mathematics and 93 out of 254 in Applied Mathematics in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.583
Source Normalized Impact per Paper (SNIP) 2015: 1.106
Impact per Publication (IPP) 2015: 0.712

Mathematical Citation Quotient (MCQ) 2015: 0.43

Online
ISSN
1569-3945
See all formats and pricing
Select Volume and Issue

Issues

Natural linearization for the identification of nonlinear heat transfer laws

H. W. Engl / P. Fusek / S. V. Pereverzev

Industrial Mathematics Institute, Johannes Kepler University, A-4040 Linz, Austria and Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, A-4040 Linz, Austria. E-mail:

Industrial Mathematics Institute, Johannes Kepler University, A-4040 Linz, Austria. Email:

Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, A-4040 Linz, Austria. E-mail:

Citation Information: Journal of Inverse and Ill-posed Problems jiip. Volume 13, Issue 6, Pages 567–582, ISSN (Online) 1569-3953, ISSN (Print) 0928-0219, DOI: https://doi.org/10.1515/156939405775199497,

Publication History

Published Online:

A fast algorithm for numerical identification of nonlinear heat transfer laws based on a natural linearization of the corresponding inverse problem is introduced. Its theoretical background is discussed, and the numerical tests show that it is suitable for problems with perturbed data. The proposed approach can be also used for other parameter identification problems, where one wants to recover an unknown nonlinear parameter β(u) from distributed noisy observations of the state u.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mårten Gulliksson, Anders Holmbom, Jens Persson, and Ye Zhang
Inverse Problems, 2016, Volume 32, Number 2, Page 025005
[2]
R. Engbers, M. Burger, and V. Capasso
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, Volume 372, Number 2028, Page 20130402
[3]
Dinh Nho Hào, Bui Viet Huong, Phan Xuan Thanh, and D. Lesnic
Applicable Analysis, 2014, Page 1
[4]
Hrushikesh N. Mhaskar, V. Naumova, and S.V. Pereverzyev
Applied Mathematics and Computation, 2013, Volume 224, Page 835
[5]
F. Cruz-Peragon, J.M. Palomar, P.J. Casanova, M.P. Dorado, and F. Manzano-Agugliaro
Renewable and Sustainable Energy Reviews, 2012, Volume 16, Number 3, Page 1709
[6]
R.J. Goldstein, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, S. Garrick, V. Srinivasan, K. Ghosh, and R. Mittal
International Journal of Heat and Mass Transfer, 2010, Volume 53, Number 21-22, Page 4397
[7]
Hui Cao, Sergei V Pereverzev, and Eva Sincich
Journal of Physics: Conference Series, 2008, Volume 135, Page 012027
[8]
Yi Heng, Shuai Lu, Adel Mhamdi, and Sergei V Pereverzev
Inverse Problems, 2010, Volume 26, Number 5, Page 055006

Comments (0)

Please log in or register to comment.