Jump to ContentJump to Main Navigation
Show Summary Details

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.

6 Issues per year

IMPACT FACTOR increased in 2015: 0.987
Rank 59 out of 312 in category Mathematics and 93 out of 254 in Applied Mathematics in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.583
Source Normalized Impact per Paper (SNIP) 2015: 1.106
Impact per Publication (IPP) 2015: 0.712

Mathematical Citation Quotient (MCQ) 2015: 0.43

See all formats and pricing
Volume 14, Issue 3 (May 2006)


Inversion of the Radon transform, based on the theory of A-analytic functions, with application to 3D inverse kinematic problem with local data

A. L. Bukhgeim
  • Department of Mathematics and Statistics, Wichita State University, 1845 N. Fairmount, Wichita, KS, 67260-0033, USA. E-mail:
/ A. A. Bukhgeim

In the introduction we show that the inverse problems for transport equations are naturally reduced to the Cauchy problem for the so called A-analytic functions, and hence the solution is given in terms of operator analog of the Cauchy transform. In Section 2 we develop elements of the theory of A-analytic functions and obtain stability estimates for our Cauchy transform. In Section 3 we discuss numerical aspects of this transformation. In Section 4 we apply this algorithm to the 3-dimensional inverse kinematic problem with local data on the Earth surface, using modified Newton method and discuss numerical examples.

About the article

Published Online:

Published in Print: 2006-05-01

Citation Information: Journal of Inverse and Ill-posed Problems jiip, ISSN (Online) 1569-3953, ISSN (Print) 0928-0219, DOI: https://doi.org/10.1515/156939406777340883. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alexandru Tamasan
Inverse Problems, 2007, Volume 23, Number 5, Page 2197

Comments (0)

Please log in or register to comment.
Log in