Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.


IMPACT FACTOR 2017: 0.941
5-year IMPACT FACTOR: 0.953

CiteScore 2017: 0.91

SCImago Journal Rank (SJR) 2017: 0.461
Source Normalized Impact per Paper (SNIP) 2017: 1.022

Mathematical Citation Quotient (MCQ) 2017: 0.49

Online
ISSN
1569-3945
See all formats and pricing
More options …
Volume 25, Issue 1

Issues

Feasibility of parameter estimation in hepatitis C viral dynamics models

Joseph G. Arthur / Hien T. Tran / Philip Aston
Published Online: 2016-02-17 | DOI: https://doi.org/10.1515/jiip-2014-0048

Abstract

Methodologies are presented for assessing the feasibility of parameter estimation in nonlinear ordinary differential equation (ODE) models. These methods are applied to a recent model for hepatitis C viral dynamics. Subset selection is performed on the model parameters, and maximum likelihood estimation is conducted using available data from the literature.

Keywords: Parameter estimation; expectation maximization; identifiability; sensitivity analysis

MSC 2010: 65L09; 92B05

References

  • [1]

    Adams B., Banks H., Davidian M. and Rosenberg E., Estimation and prediction with HIV-treatment interruption data, Bull. Math. Biol. 69 (2007), no. 2, 563–584. Google Scholar

  • [2]

    Attarian A., Patient specific subset selection, estimation and validation of an HIV-1 model with censored observations under an optimal treatment schedule, Ph.D. thesis, North Carolina State University, 2012. Google Scholar

  • [3]

    Baker C. T., Bocharov G., Paul C. and Rihan F., Computational modelling with functional differential equations: Identification, selection, and sensitivity, Appl. Numer. Math. 53 (2005), no. 2, 107–129. Google Scholar

  • [4]

    Banks H. T. and Tran H. T., Mathematical and Experimental Modeling of Physical and Biological Processes, Textb. Math., Chapman & Hall/CRC, Boca Raton, 2009. Google Scholar

  • [5]

    Chatterjee A., Guedj J. and Perelson A. S., Mathematical modelling of hcv infection: What can it teach us in the era of direct-acting antiviral agents?, Antivir. Ther. 17 (2012), no. 6, 1171–1182. Google Scholar

  • [6]

    Dahari H., Lo A., Ribeiro R. and Perelson A., Modeling hepatitis C virus dynamics: Liver regeneration and critical drug efficacy, J. Theoret. Biol. 247 (2007), no. 2, 371–381. Google Scholar

  • [7]

    Dahari H., Rong L., Layden T. and Cotler S., Hepatocyte proliferation and hepatitis C virus (HCV) kinetics during treatment, Clinic. Pharmacol. Ther. 89 (2011), no. 3, 353–354. Google Scholar

  • [8]

    Dempster A., Laird N. and Rubin D., Maximum Likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B. Stat. Methodol. 39 (1977), 1–38. Google Scholar

  • [9]

    Fink M., Automatic differentiation for matlab, 2007, http://www.mathworks.com/matlabcentral/fileexchange/15235-automatic-differentiation-for-matlab.

  • [10]

    Guedj J., Bazzoli C., Neumann A. and Mentré F., Design evaluation and optimization for models of hepatitis C viral dynamics, Statist. Med. 30 (2011), no. 10, 1045–1056. Google Scholar

  • [11]

    Hadziyannis S., Sette Jr H., Morgan T., Balan V., Diago M., Marcellin P., Ramadori G., Bodenheimer Jr H., Bernstein D., Rizzetto M., Zeuzem S., Pockros P. J., Lin A. and Ackrill A. M., Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: A randomized study of treatment duration and ribavirin dose, Ann. Intern. Med. 140 (2004), no. 5, 346–355. Google Scholar

  • [12]

    Lindenbach B. D. and Rice C. M., Unravelling hepatitis C virus replication from genome to function, Nature 436 (2005), no. 7053, 933–938. Google Scholar

  • [13]

    Miao H., Xia X., Perelson A. and Wu H., On identifiability of nonlinear ode models and applications in viral dynamics, SIAM Rev. 53 (2011), no. 1, 3–39. Google Scholar

  • [14]

    Neumann A., Lam N., Dahari H., Gretch D., Wiley T., Layden T. and Perelson A., Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy, Science 282 (1998), no. 5386, 103–107. Google Scholar

  • [15]

    Pan Q., Peppelenbosch M., Janssen H. and de Knegt R., Telaprevir/boceprevir era: From bench to bed and back, World J. Gastroenterol. 18 (2012), no. 43, 6183–6188. Google Scholar

  • [16]

    Perelson A. S., Neumann A. U., Markowitz M., Leonard J. M. and Ho D. D., HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science 271 (1996), no. 5255, 1582–1586. Google Scholar

  • [17]

    Poordad F., McCone Jr J., Bacon B. R., Bruno S., Manns M. P., Sulkowski M. S., Jacobson I. M., Reddy K. R., Goodman Z. D., Boparai N., DiNubile M. J., Sniukiene V., Brass C. A., Albrecht J. K. and Bronowicki J.-P., Boceprevir for untreated chronic HCV genotype 1 infection, New England J. Med. 364 (2011), no. 13, 1195–1206. Google Scholar

  • [18]

    Quaiser T. and Mönnigmann M., Systematic identifiability testing for unambiguous mechanistic modeling – Application to jak-stat, map kinase, and nf-κb signaling pathway models, BMC Syst. Biol. 3 (2009), no. no. 1, Paper No. 50. Google Scholar

  • [19]

    Ransley M., Mathematical analysis of the HCV model, MMath project report, University of Surrey, 2011. Google Scholar

  • [20]

    Shudo E., Ribeiro R. and Perelson A., Modelling hepatitis C virus kinetics during treatment with pegylated interferon α-2b: Errors in the estimation of viral kinetic parameters, J. Viral Hepat. 15 (2007), no. 5, 357–362. Google Scholar

  • [21]

    Snoeck E., Chanu P., Lavielle M., Jacqmin P., Jonsson E., Jorga K., Goggin T., Grippo J., Jumbe N. and Frey N., A comprehensive hepatitis C viral kinetic model explaining cure, Clinic. Pharmacol. Ther. 87 (2010), no. 6, 706–713. Google Scholar

About the article

Received: 2014-07-16

Revised: 2015-12-04

Accepted: 2016-01-13

Published Online: 2016-02-17

Published in Print: 2017-02-01


Funding Source: National Science Foundation

Award identifier / Grant number: DGE-4747

Award identifier / Grant number: NSF-DMS 1022688

Funding Source: National Institute of Allergy and Infectious Diseases

Award identifier / Grant number: NIAID 9R01AI071915

J. G. Arthur was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-4747. Additionally, travel funding for J. G. Arthur to present this work at the SIAM Conference on the Life Sciences was provided by the Office of Undergraduate Research and Department of Mathematics, both at North Carolina State University. Also, H. T. Tran was supported in part by the National Institute of Allergy and Infectious Disease under grant NIAID 9R01AI071915 and by the National Science Foundation under grant NSF-DMS 1022688.


Citation Information: Journal of Inverse and Ill-posed Problems, Volume 25, Issue 1, Pages 69–80, ISSN (Online) 1569-3945, ISSN (Print) 0928-0219, DOI: https://doi.org/10.1515/jiip-2014-0048.

Export Citation

© 2017 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in