[1]

S. Albeverio, R. O. Hryniv and L. P. Nizhnik,
Inverse spectral problems for non-local Sturm–Liouville operators,
Inverse Problems 23 (2007), 523–535.
CrossrefGoogle Scholar

[2]

A. V. Bitsadze and A. A. Samarskii,
Some elementary generalizations of linear elliptic boundary value problems,
Dokl. Akad. Nauk SSSR 185 (1969), 739–740.
Google Scholar

[3]

P. J. Browne and B. D. Sleeman,
Inverse nodal problem for Sturm–Liouville equation with eigenparameter dependent boundary conditions,
Inverse Problems 12 (1996), 377–381.
CrossrefGoogle Scholar

[4]

V. Bryuns,
Generalized boundary-value problem for an ordinary linear differential operator,
Dokl. Akad. Nauk SSSR 198 (1971), 1255–1258.
Google Scholar

[5]

S. A. Buterin and C. T. Shieh,
Inverse nodal problem for differential pencils,
Appl. Math. Lett. 22 (2009), 1240–1247.
CrossrefGoogle Scholar

[6]

B. Chanane,
Computing the eigenvalues of a class of nonlocal Sturm–Liouville problems,
Math. Comput. Modelling 50 (2009), 225–232.
CrossrefGoogle Scholar

[7]

Y. T. Chen, Y. H. Cheng, C. K. Law and J. Tsay,
${L}^{1}$ convergence of the reconstruction formula for the ponential function,
Proc. Amer. Math. Soc. 130 (2002), 2319–2324.
Google Scholar

[8]

Y. H. Cheng and C. K. Law,
On the quasi-nodal map for the Sturm–Liouville problem,
Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 71–86.
CrossrefGoogle Scholar

[9]

Y. H. Cheng, C. K. Law and J. Tsay,
Remarks on a new inverse nodal problem,
J. Math. Anal. Appl. 248 (2000), 145–155.
CrossrefGoogle Scholar

[10]

R. Čiupaila, Ž. Jesevičuite and M. Sapagovas,
Eigenvalue problem for ordinary differential operator subject to integer condition,
Nonlinear Anal. 9 (2004), 109–116.
Google Scholar

[11]

S. Currie and B. A. Waston,
Inverse nodal problems for Sturm–Liouville equations on graphs,
Inverse Problems 23 (2007), 2029–2040.
CrossrefGoogle Scholar

[12]

L. Greenberg and M. Marletta,
Numerical solution of non-self-adjoint Sturm–Liouville problems and related systems,
SIAM J. Numer. Anal. 38 (2001), 1800–1845.
CrossrefGoogle Scholar

[13]

O. H. Hald and J. R. McLaughlin,
Solutions of inverse nodal problems,
Inverse Problems 5 (1989), 307–347.
CrossrefGoogle Scholar

[14]

G. Infante,
Eigenvalues of some non-local boundary-value problems,
Proc. Edinb. Math. Soc. (2) 46 (2003), 75–86.
Google Scholar

[15]

N. I. Ionkin and E. A. Valikova,
On the eigenvalues and eigenfunctions of a nonclasscial boundary value problem (in Russian),
Math. Model. Russia 1 (1996), 53–63.
Google Scholar

[16]

C. K. Law, C. L. Shen and C. F. Yang,
The inverse nodal problem on the smoothness of the potential function,
Inverse Problems 15 (1999), 252–263.
Google Scholar

[17]

C. K. Law and J. Tsay,
On the well-posedness of the inverse nodal problem,
Inverse Problems 17 (2001), 1493–1512.
CrossrefGoogle Scholar

[18]

C. K. Law and C. F. Yang,
Reconstructing the potential function and its derivatives using nodal data,
Inverse Problems 14 (1998), 299–312.
CrossrefGoogle Scholar

[19]

B. M. Levitan,
Inverse Sturm–Liouville Problems,
VNU Science Press, Utrecht, 1987.
Google Scholar

[20]

B. M. Levitan and I. S. Sargsjan,
Sturm–Liouville and Dirac Operators (in Russian),
Nauka, Mosocow, 1988.
Google Scholar

[21]

V. A. Marchenko,
Sturm–Liouville Operators and Their Applications (in Russian),
Naukova Dumka, Kiev, 1977.
Google Scholar

[22]

C. M. McCarthy and W. Rundell,
Eigenparameter dependent inverse Sturm–Liouville problems,
Numer. Funct. Anal. Optim. 24 (2003), 85–105.
CrossrefGoogle Scholar

[23]

J. R. McLaughlin,
Inverse spectral theory using nodal points as data—A uniqueness result,
J. Differential Equations 73 (1988), 354–362.
CrossrefGoogle Scholar

[24]

S. Pečiulytė, O. Štikonienė and A. Štikonas,
Sturm–Liouville problem for stationary differential operator with nonlocal integral boundary conditions,
Math. Model. Anal. 10 (2005), 377–392.
Google Scholar

[25]

J. Pöschel and E. Trubowitz,
Inverse Spectral Theory,
Academic Press, Orlando, 1987.
Google Scholar

[26]

W. Rundell and P. Sacks,
Numerical technique for the inverse resonance problem,
J. Comput. Appl. Math. 170 (2004), 337–347.
CrossrefGoogle Scholar

[27]

M. P. Sapagovas,
The eigenvalues of some problem with a nonlocal condition (in Russian),
Differ. Equ. 7 (2002), 1020–1026.
Google Scholar

[28]

M. P. Sapagovas and A. D. Štikonas,
On the structure of the spectrum of a differential operator with a nonlocal condition,
Differ. Equ. 41 (2005), 1010–1018.
CrossrefGoogle Scholar

[29]

C. L. Shen,
On the nodal sets of the eigenfunctions of the string equations,
SIAM J. Math. Anal. 19 (1988), 1419–1424.
CrossrefGoogle Scholar

[30]

C. L. Shen and C. T. Shieh,
An inverse nodal problem for vectorial Sturm–Liouville equation,
Inverse Problems 16 (2000), 349–356.
CrossrefGoogle Scholar

[31]

C. T. Shieh and V. A. Yurko,
Inverse nodal and inverse spectral problems for discontinuous boundary value problem,
J. Math. Anal. Appl. 347 (2008), 266–272.
CrossrefGoogle Scholar

[32]

A. Štikonas and O. Štikonienė,
Characteristic functions for Sturm–Liouville problems with nonlocal boundary conditions,
Math. Model. Anal. 14 (2009), 229–246.
CrossrefGoogle Scholar

[33]

C. F. Yang,
Inverse nodal problem for a class of nonlocal Sturm–Liouville operator,
Math. Model. Anal. 15 (2010), 383–392.
CrossrefGoogle Scholar

[34]

C. F. Yang,
Stability in the inverse nodal solution for the interior transmission problem,
J. Differential Equations 260 (2016), 2490–2506.
CrossrefGoogle Scholar

[35]

C. F. Yang and V. A. Yurko,
Recovering Dirac operator with nonlocal boundary conditions,
J. Math. Anal. Appl. 440 (2016), 155–166.
CrossrefGoogle Scholar

[36]

X. F. Yang,
A solution of the inverse nodal problem,
Inverse Problems 13 (1997), 203–213.
CrossrefGoogle Scholar

[37]

V. A. Yurko,
Integral transforms connected with discontinious boundary value problems,
Integral Transforms Spec. Funct. 10 (2000), 141–164.
CrossrefGoogle Scholar

[38]

V. A. Yurko,
Inverse Spectral Problems for Differential Operators and Their Applications,
Gordon and Breach, Amsterdam, 2000.
Google Scholar

[39]

V. A. Yurko,
Inverse nodal problems for Sturm–Liouville operators on star-type graphs,
J. Inverse Ill-Posed Probl. 16 (2008), 715–722.
Google Scholar

[40]

V. A. Yurko and C. F. Yang,
Recovering differential operators with nonlocal boundary conditions,
Anal. Math. Phys. (2015), 10.1007/s13324-015-0120-6.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.