Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.


IMPACT FACTOR 2017: 0.941
5-year IMPACT FACTOR: 0.953

CiteScore 2017: 0.91

SCImago Journal Rank (SJR) 2017: 0.461
Source Normalized Impact per Paper (SNIP) 2017: 1.022

Mathematical Citation Quotient (MCQ) 2017: 0.49

Online
ISSN
1569-3945
See all formats and pricing
More options …
Volume 26, Issue 1

Issues

A regularized two-dimensional sampling algorithm

Weidong Chen
  • Corresponding author
  • Department of Mathematics and Statistics, Minnesota State University, Mankato, MN 56001, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-07 | DOI: https://doi.org/10.1515/jiip-2015-0049

Abstract

In this paper, a regularized sampling algorithm for band-limited signals is presented in the two-dimensional case. The convergence of the regularized sampling algorithm is studied and compared with Shannon’s sampling theorem and the Tikhonov regularization method by some examples.

Keywords: Sampling theorem; ill-posedness; regularization

MSC 2010: 65T40

References

  • [1]

    A. Angierski, H. Richter, V. Kuehn and N. Damaschke, Extension of SoS sampling kernels for 2D FRI problems, Electron. Lett. 48 (2012), no. 9, 527–528. CrossrefWeb of ScienceGoogle Scholar

  • [2]

    T. Blumensath and M. E. Davies, Sampling theorems for signals from the union of finite-dimensional linear subspaces, IEEE Trans. Inform. Theory 55 (2009), no. 4, 1872–1882. CrossrefWeb of ScienceGoogle Scholar

  • [3]

    J. L. Brown, Jr., On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem, J. Math. Anal. Appl. 18 (1967), 75–84. CrossrefGoogle Scholar

  • [4]

    D. S. Chen and J. P. Allebach, Analysis of error in reconstruction of two-dimensional signals from irregularly spaced samples, IEEE Trans. Acoust. Speech Signal Process. 35 (1987), no. 2, 173–180. CrossrefGoogle Scholar

  • [5]

    W. Chen, An efficient method for an ill-posed problem—band-limited extrapolation by regularization, IEEE Trans. Signal Process. 54 (2006), 4611–4618. CrossrefGoogle Scholar

  • [6]

    W. Chen, The ill-posedness of restoring lost samples and regularized restoration for band-limited signals, Signal Process. 91 (2011), 1315–1318. CrossrefWeb of ScienceGoogle Scholar

  • [7]

    W. Chen, The ill-posedness of the sampling problem and regularized sampling algorithm, Digit. Signal Process. 21 (2011), 375–390. CrossrefWeb of ScienceGoogle Scholar

  • [8]

    W. Chen, Regularized restoration for two dimensional band-limited signals, Multidimens. Syst. Signal Process. 26 (2015), no. 3, 665–675. CrossrefWeb of ScienceGoogle Scholar

  • [9]

    K. F. Cheung and R. J. Marks II, Ill-posed sampling theorems, IEEE Trans. Circuits Syst. 32 (1985), 481–484. CrossrefGoogle Scholar

  • [10]

    C. Ciuhu and G. de Haan, A 2-dimensional generalized sampling theory and its application to deinterlacing, Visual Communications and Image Processing 2004, Proc. SPIE 5308, SPIE Press, Bellingham (2004), 700–711. Google Scholar

  • [11]

    Z. Cvetkovic and I. Daubechies, Single-bit oversampled a/d conversion with exponential accuracy in the bit-rate, Prodeedings of Data Compression Conference (DCC 2000), IEEE Press, Piscataway 10.1109/DCC.2000.838174. Google Scholar

  • [12]

    Y. C. Eldar and M. Unser, Nonideal sampling and interpolation from noisy observations in shift-invariant spaces, IEEE Trans. Signal Process. 54 (2006), no. 7, 2636–2651. CrossrefGoogle Scholar

  • [13]

    A. F. G. C. Goodwin, Reconstruction of multidimensional bandlimited signals from nonuniform and generalized samples, IEEE Trans. Signal Process. 53 (2005), no. 11, 4273–4282. CrossrefGoogle Scholar

  • [14]

    A. Jerri, The Shannon sampling theorem —its various extensions and applications: A tutorial review, Proc. IEEE 65 (1977), no. 11, 1565–1596. CrossrefGoogle Scholar

  • [15]

    R. J. Marks II, Noise sensitivity of band-limited signal derivative interpolation, IEEE Trans. Acoust. Speech Signal Process. 31 (1983), 1028–1032. CrossrefGoogle Scholar

  • [16]

    A. Papoulis, Generalized sampling expansion, IEEE Trans. Circuits Syst. 24 (1977), 652–654. CrossrefGoogle Scholar

  • [17]

    J. Selva, Functionally weighted Lagrange interpolation of band-limited signals from nonuniform samples, IEEE Trans. Signal Process. 57 (2009), no. 1, 168–181. Web of ScienceCrossrefGoogle Scholar

  • [18]

    C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), 379–423, 623–656. CrossrefGoogle Scholar

  • [19]

    J. Shi, X. Liu, L. He, M. Han, Q. Li and N. Zhang, Sampling and reconstruction in arbitrary measurement and approximation spaces associated with linear canonical transform, IEEE Trans. Signal Process. 64 (2016), no. 24, 6379–6391. Web of ScienceCrossrefGoogle Scholar

  • [20]

    S. Smale and D.-X. Zhou, Shannon sampling and function reconstruction from point values, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 279–305. CrossrefGoogle Scholar

  • [21]

    A. Steiner, Plancherel’s theorem and the Shannon series derived simultaneously, Amer. Math. Monthly 87 (1980), 193–197. CrossrefGoogle Scholar

  • [22]

    A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems, John Wiley, New York, 1977. Google Scholar

  • [23]

    R. Tur, Y. C. Eldar and Z. Friedman, Innovation rate sampling of pulse streams with application to ultrasound imaging, IEEE Trans. Signal Process. 59 (2011), no. 4, 1827–1842. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-05-14

Revised: 2017-01-18

Accepted: 2017-01-20

Published Online: 2017-06-07

Published in Print: 2018-02-01


Citation Information: Journal of Inverse and Ill-posed Problems, Volume 26, Issue 1, Pages 67–84, ISSN (Online) 1569-3945, ISSN (Print) 0928-0219, DOI: https://doi.org/10.1515/jiip-2015-0049.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in