Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.


IMPACT FACTOR 2018: 0.881
5-year IMPACT FACTOR: 1.170

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.430
Source Normalized Impact per Paper (SNIP) 2018: 0.969

Mathematical Citation Quotient (MCQ) 2017: 0.49

Online
ISSN
1569-3945
See all formats and pricing
More options …
Volume 26, Issue 2

Issues

Towards dynamic PET reconstruction under flow conditions: Parameter identification in a PDE model

Louise Reips
  • Corresponding author
  • Department of Mathematics, Universidade Federal de Santa Catarina,Campus Blumenau, CEP 89065-300 Blumenau-SC, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin BurgerORCID iD: http://orcid.org/0000-0003-2619-2912 / Ralf Engbers
  • Institute for Computational and Applied Mathematics and Cells in Motion Cluster of Excellence, Westfälische Wilhelms-Universität (WWU) Münster, Einsteinstr. 62, 48149 Münster, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-12 | DOI: https://doi.org/10.1515/jiip-2015-0016

Abstract

The aim of this paper is to discuss potential advances in PET kinetic models and direct reconstruction of kinetic parameters. As a prominent example we focus on a typical task in perfusion imaging and derive a system of transport-reaction-diffusion equations, which is able to include macroscopic flow properties in addition to the usual exchange between arteries, veins, and tissues. For this system we propose an inverse problem of estimating all relevant parameters from PET data. We interpret the parameter identification as a nonlinear inverse problem, for which we formulate and analyze variational regularization approaches. For the numerical solution we employ gradient-based methods and appropriate splitting methods, which are used to investigate some test cases.

Keywords: Parameter identification; dynamic PET; inverse problems; image processing; forward-backward splitting; reaction; diffusion; transport

MSC 2010: 35K57

References

  • [1]

    J. Y. Ahn, D. S. Lee, S. Kim, G. J. Cheon, J. S. Yeo, S. Shin, J. Chung and M. C. Lee, Quantification of regional myocardial blood flow using dynamic H215O PET and factor analysis, J. Nucl. Med 42 (2001), no. 5, 782–787. Google Scholar

  • [2]

    R. E. Bank, W. Coughran, Jr. and L. C. Cowsar, The finite volu-me scharfetter-gummel method for steady convection diffusion equations, Comput. Vis. Sci. 1 (1998), no. 3, 123–136. CrossrefGoogle Scholar

  • [3]

    M. Benning, A nonlinear variational method for improved quantification of myocardial blood flow using dynamic H215O PET, Diplomarbeit, Westfälische Wilhelms-Universität Münster, Münster, 2008. Google Scholar

  • [4]

    M. Benning, P. Heins and M. Burger, A solver for dynamic pet reconstruction based on forward-backward splitting, AIP Conf. Proc. 1281 (2010), 10.1063/1.3498318. Google Scholar

  • [5]

    M. Benning, T. Kösters, F. Wübbeling, K. Schäfers and M. Burger, A nonlinear variational method for improved quantification of myocardial blood flow using dynamic H215O PET, IEEE Nuclear Science Symposium Conference Record (NSS ’08), IEEE Press, Piscataway (2009), 4472–4477. Google Scholar

  • [6]

    C. Brune, A. Sawatzky and M. Burger, Primal and dual Bregman methods with application to optical nanoscopy, Int. J. Comput. Vis. 92 (2011), no. 2, 211–229. CrossrefWeb of ScienceGoogle Scholar

  • [7]

    R. E. Carson, Tracer kinetic modeling in PET, Positron Emission Tomography. Basic Sciences, Springer, London (2005), 127–159. Google Scholar

  • [8]

    M. Castelani, A. Colombo, R. Giordano, E. Pusineri, C. Canzi, V. Longari, E. Piccaluga, S. Palatresi, L. Dellavedova, D. Soligo, P. Rebulla and P. Gerundini, The role of PET with  13N-ammonia and  18F-FDG in the assessment of myocardial perfusion and metabolism in patients with recent AMI and intracoronarystem cell injection, J. Nucl. Med. 51 (2010), no. 12, 1908–1916. Google Scholar

  • [9]

    R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I, Springer, Berlin, 1992. Google Scholar

  • [10]

    L. Eriksson, C. Bohm, M. Kesselberg, G. Blomqvist, J. Litton, L. Widen, M. Bergstrom, K. Ericson and T. Greitz, A four ring positron camera system for emission tomography of the brain, IEEE Trans. Nucl. Sci. 29 (1982), 539–543. CrossrefGoogle Scholar

  • [11]

    L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, American Mathematical Society, Providence, 2010. Google Scholar

  • [12]

    M. Fiechtera, C. Gebharda, J. R. Ghadria, T. A. Fuchsa, A. P. Pazhenkottila, R. N. Nkouloua, B. A. Herzoga, U. Altorfera, O. Gaemperlia and P. A. Kaufmann, Myocardial perfusion imaging with  13N-ammonia PET is a strong predictor for outcome, Internat. J. Cardiology 167 (2012), no. 3, 1023–1026. Google Scholar

  • [13]

    M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints, Math. Modelling Theory Appl. 23, Springer, New York, 2009. Google Scholar

  • [14]

    J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer, New York, 2005. Google Scholar

  • [15]

    M. E. Kamasak, C. A. Boumann, E. D. Morris and K. Sauer, Direct reconstruction of kinetic parameter images from dynamic PET data, IEEE Trans. Med. Imaging 24 (2005), 636–650. PubMedCrossrefGoogle Scholar

  • [16]

    C. Katoh, K. Morita, T. Shiga, N. Kubo, K. Nakada and N. Tamaki, Improvement of algorithm for quantification of regional blood flow using  15O-water with PET, J. Nucl. Med. 45 (2004), no. 11, 1908–1916. Google Scholar

  • [17]

    J. Krivokapich, G. T. Smith, S. C. Huang, E. J. Hoffman, O. Ratib, M. E. Phelps and H. R. Schelbert, 13N-ammonia myocardial imaging at rest with exercise in normal volunteers. quantification of absolute myocardial perfusion with dynamic positron emission tomography, Circulation 80 (1989), 1328–1337. Google Scholar

  • [18]

    W. G. Kuhle, G. Porenta, S. C. Huang, D. Buxton, S. S. Gambhir, H. Hansen, M. E. Phelps and H. R. Schelbert, Quantification of regional myocardial blood flow using 13N ammonia and reoriented dynamic positron emission tomographic imaging, Circulation 86 (1992), 1004–1017. Google Scholar

  • [19]

    J. R. Levick, An Introduction to Cardiovascular Physiology, Hodder Arnold, London, 2010. Google Scholar

  • [20]

    L. Lüdermann, G. Sreenivasa, R. Michel, C. Rosner, M. Plotkin, R. Felix, P. Wust and H. Amthauer, Corrections of arterial input function for dynamic H215O PET to assess perfusion of pelvic tumours: Arterial blood sampling versus image extraction, Phys. Med. Biol. 51 (2006), 2883–2900. Google Scholar

  • [21]

    O. Muzik, R. S. Beanlands, G. D. Hutchins, T. J. Magner, N. Nguyen and M. Schwaiger, Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET, J. Nucl. Med 34 (1993), 83–91. PubMedGoogle Scholar

  • [22]

    F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, Monogr. Math. Model. Comput., SIAM, Philadelphia, 2001. Google Scholar

  • [23]

    M. E. Phelps, E. J. Hoffman, S. C. Huang and D. E. Kuhl, Ecat: A new computerized tomographic imaging system for positron-emitting radiopharmaceuticals, J. Nucl. Med. 19 (1978), 635–647. PubMedGoogle Scholar

  • [24]

    L. Reips, Parameter identification in medical imaging, Ph.D. thesis, University of Münster, Münster, 2013. Google Scholar

  • [25]

    W. Rudin, Functional Analysis, McGraw–Hill, New York, 1973. Google Scholar

  • [26]

    A. Sawatzky, Nonlocal total variation in medical imaging, Ph.D. thesis, Westfälische Wilhelms-Universität Münster, Münster, 2011. Google Scholar

  • [27]

    A. Sawatzky, C. Brune, F. Wübbeling, T. Kösters, K. Schäfers and M. Burger, Accurate EM-TV algorithm in PET with low SNR, IEEE Nuclear Science Symposium Conference Record (NSS ’08), IEEE Press, Piscataway (2009), 5133–5137. Google Scholar

  • [28]

    K. P. Schäfers, T. J. Spinks, P. G. Camici, P. M. Bloomfield, C. G. Rhodes, M. P. Law, C. S. R. Baker and O. Rimoldi, Absolute quantification of myocardial blood flow with H215O and 3-dimensional PET: An experimental validation, J. Nucl. Med. 43 (2002), no. 8, 1031–1040. Google Scholar

  • [29]

    L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imaging 1 (1982), 113–122. CrossrefPubMedWeb of ScienceGoogle Scholar

  • [30]

    R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr. 49, American Mathematical Society, Providence, 1997. Google Scholar

  • [31]

    P. T. Siegrist, L. Husmann, M. Knabenhans, O. Gaemperli, I. Valenta, T. Hoefflinghaus, H. Scheffel, P. Stolzmann, H. Alkadhi and P. A. Kaufmann,  13N-ammonia myocardial perfusion imaging with a PET/CT scanner: Impact on clinical decision making and cost-effectiveness, Eur. J. Nucl. Med. Mol. Imaging 35 (2008), 889–895. Google Scholar

  • [32]

    A. Takahashi and C. Takahashi, A summability method, Rev. Colombiana Mat. 2 (1968), 29–44. Google Scholar

  • [33]

    Y. Vardi, L. A. Shepp and L. Kaufman, A statistical model for positron emission tomography, J. Amer. Statist. Assoc. 80 (1985), no. 389, 8–37. CrossrefGoogle Scholar

  • [34]

    F. Werner and T. Hohage, Convergence rates in expectation for Tikhonov-type regularization of inverse problems with Poisson data, Inverse Problems 28 (2012), no. 10, Article ID 104004. Web of ScienceGoogle Scholar

  • [35]

    M. N. Wernick and J. N. Aarsvold, Emission Tomography: The Fundamentals of PET and SPECT, Elsevier Academic Press, Amsterdam, 2004. Google Scholar

About the article

Received: 2015-02-02

Revised: 2017-04-11

Accepted: 2017-06-30

Published Online: 2017-08-12

Published in Print: 2018-04-01


This work was carried out when Louise Reips was with the Institute for Computational and Applied Mathematics, WWU Münster. Martin Burger and Ralf Engbers acknowledge partial support by the German Science Foundation (DFG) via SFB 656, Subproject B2, and Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), WWU Münster, Germany.


Citation Information: Journal of Inverse and Ill-posed Problems, Volume 26, Issue 2, Pages 185–200, ISSN (Online) 1569-3945, ISSN (Print) 0928-0219, DOI: https://doi.org/10.1515/jiip-2015-0016.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in