Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.


IMPACT FACTOR 2018: 0.881
5-year IMPACT FACTOR: 1.170

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.430
Source Normalized Impact per Paper (SNIP) 2018: 0.969

Mathematical Citation Quotient (MCQ) 2018: 0.66

Online
ISSN
1569-3945
See all formats and pricing
More options …
Volume 26, Issue 2

Issues

Full waveform inversion with sparse structure constrained regularization

Zichao Yan
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, P. O. Box 9825, Beijing 100029, P. R. China; and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yanfei Wang
  • Corresponding author
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, P. O. Box 9825, Beijing 100029, P. R. China; and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-17 | DOI: https://doi.org/10.1515/jiip-2016-0076

Abstract

Full waveform inversion is a large-scale nonlinear and ill-posed problem. We consider applying the regularization technique for full waveform inversion with structure constraints. The structure information was extracted with difference operators with respect to model parameters. And then we establish an lp-lq-norm constrained minimization model for different choices of parameters p and q. To solve this large-scale optimization problem, a fast gradient method with projection onto convex set and a multiscale inversion strategy are addressed. The regularization parameter is estimated adaptively with respect to the frequency range of the data. Numerical experiments on a layered model and a benchmark SEG/EAGE overthrust model are performed to testify the validity of this proposed regularization scheme.

Keywords: Acoustic wave equation; full waveform inversion; structure constraints; regularization

MSC 2010: 65J22; 86-08; 86A22

References

  • [1]

    A. Y. Anagaw and M. D. Sacchi, Full waveform inversion with total variation regularization, preprint (2011), http://www.cspg.org/documents/Conventions/Archives/Annual/2011/131-Full_Waveform_Inversion.pdf.

  • [2]

    A. Asnaashari, R. Brossier, S. Garambois, F. Audebert, P. Thore and J. Virieux, Regularized seismic full waveform inversion with prior model information, Geophys. 78 (2013), R25–R36. Web of ScienceGoogle Scholar

  • [3]

    C. Boonyasiriwat, P. Valasek, P. Routh, W. Cao, G. T. Schuster and B. Macy, An efficient multiscale method for time-domain waveform tomography, Geophys. 74 (2009), WCC59–WCC68. Web of ScienceGoogle Scholar

  • [4]

    R. Brossier, S. Operto and J. Virieux, Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion, Geophys. 74 (2009), WCC105–WCC118. Web of ScienceGoogle Scholar

  • [5]

    C. Bunks, F. M. Saleck, S. Zaleski and G. Chavent, Multiscale seismic waveform inversion, Geophys. 60 (1995), 1457–1473. CrossrefGoogle Scholar

  • [6]

    C. Burstedde and O. Ghattas, Algorithmic strategies for full waveform inversion: 1D experiments, Geophys. 74 (2009), WCC37–WCC46. Web of ScienceGoogle Scholar

  • [7]

    A. Guitton, Blocky regularization schemes for full-waveform inversion, Geophys. Prospecting 60 (2012), 870–884. Web of ScienceCrossrefGoogle Scholar

  • [8]

    A. Guitton, G. Ayeni and E. Diaz, Constrained full-waveform inversion by model reparameterization, Geophys. 77 (2012), R117–R127. Web of ScienceGoogle Scholar

  • [9]

    B. Han, Y. X. Dou and L. Ding, Electrical resistivity tomography by using a hybrid regularization, Chinese J. Geophys. 55 (2012), 970–980. Web of ScienceGoogle Scholar

  • [10]

    W. Hu, A. Abubakar and T. M. Habashy, Simultaneous multifrequency inversion of full-waveform seismic data, Geophys. 74 (2009), R1–R14. Web of ScienceGoogle Scholar

  • [11]

    S. I. Kabanikhin, Numerical analysis of inverse problems, J. Inverse Ill-Posed Probl. 3 (1995), no. 4, 278–304. Google Scholar

  • [12]

    S. I. Kabanikhin, D. B. Nurseitov, M. A. Shishlenin and B. B. Sholpanbaev, Inverse problems for the ground penetrating radar, J. Inverse Ill-Posed Probl. 21 (2013), no. 6, 885–892. Web of ScienceGoogle Scholar

  • [13]

    P. Lailly, The seismic inverse problem as a sequence of before stack migrations, Conference on Inverse Scattering: Theory and Application (Tulsa 1983), SIAM, Philadelphia (1983), 206–220. Google Scholar

  • [14]

    Y. Lin and L. Huang, Acoustic-and elastic-waveform inversion using a modified total-variation regularization scheme, Geophys. J. Internat. 200 (2015), 489–502. Google Scholar

  • [15]

    Y. Ma, D. Hale, B. Gong and Z. Meng, Image-guided sparse-model full waveform inversion, Geophys. 77 (2012), R189–R198. Google Scholar

  • [16]

    J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006. Google Scholar

  • [17]

    R. E. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophys. J. Internat. 167 (2006), 495–503. CrossrefGoogle Scholar

  • [18]

    R. G. Pratt, Frequency-domain elastic wave modeling by finite differences: A tool for crosshole seismic imaging, Geophys. 55 (1990), 626–632. CrossrefGoogle Scholar

  • [19]

    R. G. Pratt, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model, Geophys. 64 (1999), 888–901. CrossrefGoogle Scholar

  • [20]

    A. C. Ramirez and W. R. Lewis, Regularization and full-waveform inversion: A two-step approach, SEG Technical Program Expanded Abstracts 2010, Society of Exploration Geophysicists, Tulsa (2010), 2773–2778. Google Scholar

  • [21]

    L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D 60 (1992), no. 1–4, 259–268. CrossrefGoogle Scholar

  • [22]

    J. Sheng, A. Leeds, M. Buddensiek and G. T. Schuster, Early arrival waveform tomography on near-surface refraction data, Geophys. 71 (2006), U47–U57. Google Scholar

  • [23]

    C. Shin and Y. H. Cha, Waveform inversion in the Laplace domain, Geophys. J. Internat. 173 (2008), 922–931. CrossrefGoogle Scholar

  • [24]

    L. Sirgue and R. G. Pratt, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, Geophys. 69 (2004), 231–248. CrossrefGoogle Scholar

  • [25]

    A. Tarantola, Inversion of seismic reflection data in the acoustic approximation, Geophys. 49 (1984), 1259–1266. CrossrefGoogle Scholar

  • [26]

    A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, V. H. Winston & Sons, Washington, 1977. Google Scholar

  • [27]

    J. Tromp, C. Tape and Q. Liu, Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels, Geophys. J. Internat. 160 (2005), 195–216. Google Scholar

  • [28]

    T. van Leeuwen and F. J. Herrmann, Mitigating local minima in full-waveform inversion by expanding the search space, Geophys. J. Internat. 195 (2013), 661–667. CrossrefGoogle Scholar

  • [29]

    V. V. Vasin, Convergence of gradient-type methods for nonlinear equations, Dokl. Akad. Nauk 359 (1998), no. 1, 7–9. Google Scholar

  • [30]

    J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics, Geophys. 74 (2009), WCC1–WCC26. Web of ScienceGoogle Scholar

  • [31]

    Y. Wang, Seismic impedance inversion using l1-norm regularization and gradient descent methods, J. Inverse Ill-Posed Probl. 18 (2010), no. 7, 823–838. Web of ScienceGoogle Scholar

  • [32]

    Y. Wang and C. Yang, Inverse problems, optimization and regularization: A multi-disciplinary subject, Optimization and Regularization for Computational Inverse Problems and Applications, Springer, Heidelberg (2010), 3–14. Google Scholar

  • [33]

    Y. F. Wang, Computational Methods for Inverse Problems and Their Applications, Higher Education Press, Beijing, 2007. Google Scholar

  • [34]

    Y. F. Wang, Sparse optimization methods for seismic wavefields recovery, Trudy Inst. Mat. i Mekh. UrO RAN 18 (2012), 42–55. Google Scholar

  • [35]

    Y. F. Wang, I. E. Stepanova, V. N. Titarenko and A. G. Yagola, Inverse Problems in Geophysics and Solution Methods, Higher Education Press, Beijing, 2011. Google Scholar

  • [36]

    Y. F. Wang and C. C. Yang, Accelerating migration deconvolution using a non-monotone gradient method, Geophys. 75 (2010), S131–S137. Google Scholar

  • [37]

    Y. X. Yuan, Numerical Methods for Nonlinear Programming, Shanghai Science and Technology Publisher, Shanghai, 1993. Google Scholar

  • [38]

    W. S. Zhang, J. Luo and J. W. Teng, Frequency multiscale full-waveform velocity inversion, Chinese J. Geophys. 58 (2015), 216–228. Web of ScienceGoogle Scholar

About the article

Received: 2016-11-02

Revised: 2017-08-04

Accepted: 2017-08-24

Published Online: 2017-10-17

Published in Print: 2018-04-01


Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 41325016

Award identifier / Grant number: 91630202

The research is supported by National Natural Science Foundation of China under grant numbers 41325016 and 91630202.


Citation Information: Journal of Inverse and Ill-posed Problems, Volume 26, Issue 2, Pages 243–257, ISSN (Online) 1569-3945, ISSN (Print) 0928-0219, DOI: https://doi.org/10.1515/jiip-2016-0076.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in