Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.


IMPACT FACTOR 2018: 0.881
5-year IMPACT FACTOR: 1.170

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.430
Source Normalized Impact per Paper (SNIP) 2018: 0.969

Mathematical Citation Quotient (MCQ) 2018: 0.66

Online
ISSN
1569-3945
See all formats and pricing
More options …
Volume 26, Issue 2

Issues

Sparse signal recovery with prior information by iterative reweighted least squares algorithm

Nianci Feng / Jianjun Wang / Wendong Wang
Published Online: 2017-07-06 | DOI: https://doi.org/10.1515/jiip-2016-0087

Abstract

In this paper, the iterative reweighted least squares (IRLS) algorithm for sparse signal recovery with partially known support is studied. We establish a theoretical analysis of the IRLS algorithm by incorporating some known part of support information as a prior, and obtain the error estimate and convergence result of this algorithm. Our results show that the error bound depends on the best (s+k)-term approximation and the regularization parameter λ, and convergence result depends only on the regularization parameter λ. Finally, a series of numerical experiments are carried out to demonstrate the effectiveness of the algorithm for sparse signal recovery with partially known support, which shows that an appropriate q (0<q<1) can lead to a better recovery performance than that of the case q=1.

Keywords: Compressed sensing; sparsity; prior information; iterative reweighted least squares algorithm

MSC 2010: 49M05; 65B99; 65K10; 90C26

References

  • [1]

    R. G. Baraniuk, Compressive sensing, IEEE Signal Process. Mag. 24 (2007), 118–121. CrossrefWeb of ScienceGoogle Scholar

  • [2]

    E. J. Candès, The restricted isometry property and its implications for compressed sensing, C. R. Math. Acad. Sci. Paris 346 (2008), no. 9–10, 589–592. CrossrefGoogle Scholar

  • [3]

    E. J. Candès and S. P. Boyd, Enhancing sparsity by reweighted l1 minimization, J. Fourier Anal. Appl. 14 (2008), 877–905. Web of ScienceGoogle Scholar

  • [4]

    E. J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory 52 (2006), no. 2, 489–509. CrossrefGoogle Scholar

  • [5]

    E. J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory 51 (2005), no. 12, 4203–4215. CrossrefGoogle Scholar

  • [6]

    R. E. Carrillo, L. F. Polania and K. E. Barner, Iterative algorithms for compressed sensing with partially known support, Acoustics, Speech and Signal Processing (ICASSP 2010), IEEE Press, Piscataway (2010), 3654–3657. Google Scholar

  • [7]

    R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Process. Lett. 14 (2007), 707–710. CrossrefWeb of ScienceGoogle Scholar

  • [8]

    R. Chartrand and V. Staneva, Restricted isometry properties and nonconvex compressive sensing, Inverse Problems 24 (2008), no. 3, Article ID 035020. Web of ScienceGoogle Scholar

  • [9]

    R. Chartrand and W. Yin, Iteratively reweighted algorithms for compressive sensing, Acoustics, Speech and Signal Processing (ICASSP 2008), IEEE Press, Piscataway (2008), 3869–3872. Google Scholar

  • [10]

    I. Daubechies, R. DeVore, M. Fornasier and C. S. Güntürk, Iteratively reweighted least squares minimization for sparse recovery, Comm. Pure Appl. Math. 63 (2010), no. 1, 1–38. CrossrefGoogle Scholar

  • [11]

    D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006), no. 4, 1289–1306. CrossrefGoogle Scholar

  • [12]

    S. Foucart, Sparse recovery algorithms: Sufficient conditions in terms of restricted isometry constants, Approximation Theory XIII (San Antonio 2010), Springer Proc. Math. 13, Springer, New York (2012), 65–77. Google Scholar

  • [13]

    S. Foucart and M. J. Lai, Sparsest solutions of underdeterminined linear systems via lq-minimization for 0<q<1, Appl. Comput. Harmon. Anal. 26 (2009), 395–407. Google Scholar

  • [14]

    G. Hardy, J. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952. Google Scholar

  • [15]

    S. He, Y. Wang, J. J. Wang and Z. B. Xu, Block-sparse compressed sensing with partially known signal support via non-convex minimisation, IET Signal Process. 10 (2016), 717–723. Web of ScienceCrossrefGoogle Scholar

  • [16]

    T. Ince, A. Nacaroglu and N. Watsuji, Nonconvex compressed sensing with partially known signal support, Signal Process. 93 (2012), 1–4. Web of ScienceGoogle Scholar

  • [17]

    L. W. Kang and C. S. Lu, Distributed compressive video sensing, Acoustics, Speech and Signal Processing (ICASSP 2009), IEEE Press, Piscataway (2009), 1169–1172. Google Scholar

  • [18]

    M.-J. Lai, Y. Xu and W. Yin, Improved iteratively reweighted least squares for unconstrained smoothed q minimization, SIAM J. Numer. Anal. 51 (2013), no. 2, 927–957. Google Scholar

  • [19]

    J. Li, Image compression: The mathematics of JPEG 2000, Modern Signal Process. 46 (2003), 185–221. Google Scholar

  • [20]

    S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed., Elsevier, Amsterdam, 2009. Google Scholar

  • [21]

    C. J. Miosso, R. von Borries, M. Argàez, L. Velazquez, C. Quintero and C. M. Potes, Compressive sensing reconstruction with prior information by iteratively reweighted least-squares, IEEE Trans. Signal Process. 57 (2009), no. 6, 2424–2431. CrossrefWeb of ScienceGoogle Scholar

  • [22]

    B. Olshausen and D. Field, Emergence of simple-cell receptive field properties by learing a sparse representation, Nature 381 (1996), 607–609. CrossrefGoogle Scholar

  • [23]

    B. D. Rao and K. Kreutz-Delgado, An affine scaling methodology for best basis selection, IEEE Trans. Signal Process. 47 (1999), 187–200. CrossrefGoogle Scholar

  • [24]

    V. Stanković, L. Stanković and S. Cheng, Compressive image sampling with side information, Image Processing (ICIP 2009), IEEE Press, Piscataway (2009), 3037–3040. Google Scholar

  • [25]

    R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B 58 (1996), no. 1, 267–288. Google Scholar

  • [26]

    R. von Borries, C. Jacques Miosso and C. Potes, Compressed sensing using prior information, Computational Advances in Multi-Sensor Adaptive Processing (CAMPSAP 2007), IEEE Press, Piscataway (2007), 121–124. Google Scholar

  • [27]

    Y. Wang, J. J. Wang and Z. B. Xu, On recovery of block-sparse signals via mixed l2/lq,0<q1 norm minimization, EURASIP J. Adv. Signal Process. 2013 (2013), 10.1186/1687-6180-2013-76. Google Scholar

  • [28]

    Y. Wang, J. J. Wang and Z. B. Xu, Restricted p-isometry properties of nonconvex block-sparse compressed sensing, Signal Process. 104 (2014), 188–196. CrossrefWeb of ScienceGoogle Scholar

  • [29]

    L. Weizman, Y. Eldar and D. Bashat, Compressed sensing for longitudinal MRI: An adaptive-weighted approach, Medical Phys. 49 (2015), 5195–5208. Web of ScienceGoogle Scholar

  • [30]

    Z. B. Xu, X. Y. Chang, F. M. Xu and H. Zhang, l1/2 regularization: a thresholding representation theroy and a fast solver, IEEE Trans Neur. Net. Lear. 23 (2012), 1012–1027. Google Scholar

About the article

Received: 2017-01-18

Revised: 2017-05-25

Accepted: 2017-06-23

Published Online: 2017-07-06

Published in Print: 2018-04-01


Natural Science Foundation of China under Grant number 61273020, 61673015, Fundamental Research Funds for the Central Universities under Grant number XDJK2015A007.


Citation Information: Journal of Inverse and Ill-posed Problems, Volume 26, Issue 2, Pages 171–184, ISSN (Online) 1569-3945, ISSN (Print) 0928-0219, DOI: https://doi.org/10.1515/jiip-2016-0087.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Wen-Ze Shao, Qi Ge, Li-Qian Wang, Yun-Zhi Lin, Hai-Song Deng, and Hai-Bo Li
Journal of Mathematical Imaging and Vision, 2019, Volume 61, Number 6, Page 885

Comments (0)

Please log in or register to comment.
Log in