Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.


IMPACT FACTOR 2018: 0.881
5-year IMPACT FACTOR: 1.170

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.430
Source Normalized Impact per Paper (SNIP) 2018: 0.969

Mathematical Citation Quotient (MCQ) 2018: 0.66

Online
ISSN
1569-3945
See all formats and pricing
More options …
Volume 26, Issue 2

Issues

Data-driven multichannel seismic impedance inversion with anisotropic total variation regularization

Dehua Wang / Jinghuai Gao
  • School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hongan Zhou
Published Online: 2017-09-21 | DOI: https://doi.org/10.1515/jiip-2017-0024

Abstract

Acoustic impedance (AI) inversion is a desirable tool to extract rock-physical properties from recorded seismic data. It plays an important role in seismic interpretation and reservoir characterization. When one of recursive inversion schemes is employed to obtain the AI, the spatial coherency of the estimated reflectivity section may be damaged through the trace-by-trace processing. Meanwhile, the results are sensitive to noise in the data or inaccuracies in the generated reflectivity function. To overcome the above disadvantages, in this paper, we propose a data-driven inversion scheme to directly invert the AI from seismic reflection data. We first explain in principle that the anisotropic total variation (ATV) regularization is more suitable for inverting the impedance with sharp interfaces than the total variation (TV) regularization, and then establish the nonlinear objective function of the AI model by using anisotropic total variation (ATV) regularization. Next, we solve the nonlinear impedance inversion problem via the alternating split Bregman iterative algorithm. Finally, we illustrate the performance of the proposed method and its robustness to noise with synthetic and real seismic data examples by comparing with the conventional methods.

Keywords: Seismic impedance inversion; data-driven; multichannel; regularization; split Bregman iteration

MSC 2010: 86A22; 86-08; 65J20

References

  • [1]

    A. Y. Anagaw and M. D. Sacchi, Full waveform inversion with total variation regularization, preprint (2011), http://www.cspg.org/documents/Conventions/Archives/Annual/2011/131-Full_Waveform_Inversion.pdf.

  • [2]

    A. Y. Anagaw and M. D. Sacchi, Edge-preserving seismic imaging using the total variation method, J. Geophys. Engrg. 9 (2012), 138–146. CrossrefGoogle Scholar

  • [3]

    H. Bertete-Aguirre, E. Cherkaev and M. Oristaglio, Nonsmooth gravity problem with total variation penalization functional, Geophys. J. Internat. 149 (2002), 499–507. CrossrefGoogle Scholar

  • [4]

    K. A. Berteussen and B. Ursin, Approximate computation of the acoustic impedance from seismic data, Geophys. 48 (1983), 1351–1358. CrossrefGoogle Scholar

  • [5]

    R. Choksi, Y. van Gennip and A. Oberman, Anisotropic total variation regularized L1 approximation and denoising/deblurring of 2D bar codes, Inverse Probl. Imaging 5 (2011), no. 3, 591–617. Web of ScienceGoogle Scholar

  • [6]

    D. A. Cooke and W. A. Schneider, Generalized linear inversion of reflection seismic data, Geophys. 48 (1983), 665–676. CrossrefGoogle Scholar

  • [7]

    S. Esedog̃lu and S. J. Osher, Decomposition of images by the anisotropic Rudin–Osher–Fatemi model, Comm. Pure Appl. Math. 57 (2004), no. 12, 1609–1626. CrossrefGoogle Scholar

  • [8]

    J. H. Gao and B. Zhang, Estimation of seismic wavelets based on the multivariate scale mixture of Gaussians model, Entropy 12 (2009), 14–33. CrossrefWeb of ScienceGoogle Scholar

  • [9]

    I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, 1963. Google Scholar

  • [10]

    A. Gholami, Nonlinear multichannel impedance inversion by total-variation regularization, Geophys. 80 (2015), R217–R224. Web of ScienceGoogle Scholar

  • [11]

    A. Gholami and M. D. Sacchi, A fast and automatic sparse deconvolution in the presence of outliers, IEEE Trans. Geosci. Remote Sens. 50 (2012), 4105–4116. Web of ScienceCrossrefGoogle Scholar

  • [12]

    A. Gholami and M. D. Sacchi, Fast 3D blind seismic deconvolution via constrained total variation and GCV, SIAM J. Imaging Sci. 6 (2013), no. 4, 2350–2369. Web of ScienceCrossrefGoogle Scholar

  • [13]

    S. K. Ghosh, Limitations on impedance inversion of band-limited reflection data, Geophys. 65 (2000), 951–957. CrossrefGoogle Scholar

  • [14]

    T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci. 2 (2009), no. 2, 323–343. Web of ScienceGoogle Scholar

  • [15]

    W. Jiang and J. Zhang, First-arrival traveltime tomography with modified total-variation regularization, Geophys. Prospecting (2016), 10.1111/1365-2478.12477. Web of ScienceGoogle Scholar

  • [16]

    S. I. Kabanikhin, Definitions and examples of inverse and ill-posed problems, J. Inverse Ill-Posed Probl. 16 (2008), no. 4, 317–357. Web of ScienceGoogle Scholar

  • [17]

    M. Lavergne and C. Willm, Inversion of seismograms and pseudo velocity logs, Geophys. J. Internat. 25 (1977), 231–250. Google Scholar

  • [18]

    R. O. Lindseth, Synthetic sonic logs-a process for stratigraphic interpretation, Geophys. 44 (1979), 3–26. CrossrefGoogle Scholar

  • [19]

    X. Liu and X. Yin, Blocky inversion with total variation regularization and bounds constraint, SEG Technical Program Expanded Abstracts 2015, Society of Exploration Geophysicists, Tulsa (2015), 3497–3501. Google Scholar

  • [20]

    I. Loris and C. Verhoeven, Iterative algorithms for total variation-like reconstructions in seismic tomography, GEM Int. J. Geomath. 3 (2012), no. 2, 179–208. CrossrefGoogle Scholar

  • [21]

    D. Oldenburg, T. Scheuer and S. Levy, Recovery of the acoustic impedance from reflection seismograms, Geophys. 48 (1983), 1318–1337. CrossrefGoogle Scholar

  • [22]

    L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D 60 (1992), no. 1–4, 259–268. CrossrefGoogle Scholar

  • [23]

    B. H. Russell, Introduction to Seismic Inversion Methods, Society of Exploration Geophysicists, Tulsa, 1988. Google Scholar

  • [24]

    B. Russell and H. Dan, Comparison of poststack seismic inversion methods, SEG Technical Program Expanded Abstracts 1991, Society of Exploration Geophysicists, Tulsa (1991), 876–878. Google Scholar

  • [25]

    M. Van der Baan and D. T. Pham, Robust wavelet estimation and blind deconvolution of noisy surface seismics, Geophys. 73 (2008), V37–V46. Google Scholar

  • [26]

    D. R. Velis, Stochastic sparse-spike deconvolution, Geophys. 73 (2008), R1–R9. Web of ScienceGoogle Scholar

  • [27]

    C. Walker and T. J. Ulrych, Autoregressive recovery of the acoustic impedance, Geophys. 48 (1983), 1338–1350. CrossrefGoogle Scholar

  • [28]

    Y. Wang, Seismic impedance inversion using l1-norm regularization and gradient descent methods, J. Inverse Ill-Posed Probl. 18 (2010), no. 7, 823–838. Web of ScienceGoogle Scholar

  • [29]

    F. Zhang, R. Dai and H. Liu, Seismic inversion based on L1-norm misfit function and total variation regularization, J. Appl. Geophys. 109 (2014), 111–118. Google Scholar

About the article

Received: 2017-03-12

Revised: 2017-07-08

Accepted: 2017-08-24

Published Online: 2017-09-21

Published in Print: 2018-04-01


Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 41390454

The research is supported by Young Talent fund of University Association for Science and Technology in Shaanxi, China (Grant No. 20170701) and the Major Program of the National Natural Science Foundation of China (Grant No. 41390454).


Citation Information: Journal of Inverse and Ill-posed Problems, Volume 26, Issue 2, Pages 229–241, ISSN (Online) 1569-3945, ISSN (Print) 0928-0219, DOI: https://doi.org/10.1515/jiip-2017-0024.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in