Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.


IMPACT FACTOR 2018: 0.881
5-year IMPACT FACTOR: 1.170

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.430
Source Normalized Impact per Paper (SNIP) 2018: 0.969

Mathematical Citation Quotient (MCQ) 2018: 0.66

Online
ISSN
1569-3945
See all formats and pricing
More options …
Volume 27, Issue 4

Issues

A class of homotopy with regularization for nonlinear ill-posed problems in Hilbert space

Minghui Liu
  • Corresponding author
  • School of Criminal Investigation and Counter Terrorism, People’s Public Security University of China, Beijing, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fuming Ma
Published Online: 2018-12-18 | DOI: https://doi.org/10.1515/jiip-2017-0108

Abstract

Nonlinear ill-posed problems arise in many inverse problems in Hilbert space. We investigate the homotopy method, which can obtain global convergence to solve the problems. The “homotopy with Tikhonov regularization” and “homotopy without derivative” are developed in this paper. The existence of the homotopy curve is proved. Several numerical schemes for tracing the homotopy curve are given, including adaptive tracing skills. Compared to the regularized Newton method, the numerical examples show that our proposed methods are stable and effective.

Keywords: Homotopy with regularization; nonlinear ill-posed problems; numerical method

MSC 2010: 65N20; 65H20

References

  • [1]

    E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, Class. Appl. Math. 45, SIAM, Philadelphia, 2003. Google Scholar

  • [2]

    S. Amat and S. Busquier, A two-step Steffensen’s method under modified convergence conditions, J. Math. Anal. Appl. 324 (2006), no. 2, 1084–1092. CrossrefGoogle Scholar

  • [3]

    S. Amat, S. Busquier and V. Candela, A class of quasi-Newton generalized Steffensen methods on Banach spaces, J. Comput. Appl. Math. 149 (2002), no. 2, 397–406. CrossrefGoogle Scholar

  • [4]

    I. K. Argyros, A new convergence theorem for Steffensen’s method on Banach spaces and applications, Southwest J. Pure Appl. Math. (1997), no. 1, 23–29. Google Scholar

  • [5]

    M. Balázs and G. Goldner, On the approximate solution of operator equations in Hilbert space by a Steffensen-type method, Anal. Numér. Théor. Approx. 17 (1988), no. 1, 19–23. Google Scholar

  • [6]

    G. Bao, Y. Chen and F. Ma, Regularity and stability for the scattering map of a linearized inverse medium problem, J. Math. Anal. Appl. 247 (2000), no. 1, 255–271. CrossrefGoogle Scholar

  • [7]

    G. Bao and P. Li, Inverse medium scattering for the Helmholtz equation at fixed frequency, Inverse Problems 21 (2005), no. 5, 1621–1641. CrossrefGoogle Scholar

  • [8]

    H. W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems, Inverse Problems 5 (1989), no. 4, 523–540. CrossrefGoogle Scholar

  • [9]

    H. S. Fu and B. Han, A homotopy method for nonlinear inverse problems, Appl. Math. Comput. 183 (2006), no. 2, 1270–1279. Google Scholar

  • [10]

    B. Han, G. F. Feng and J. Q. Liu, A widely convergent generalized pulse-spectrum technique for the inversion of two-dimensional acoustic wave equation, Appl. Math. Comput. 172 (2006), no. 1, 406–420. Google Scholar

  • [11]

    B. Han, H. S. Fu and Z. Li, A homotopy method for the inversion of a two-dimensional acoustic wave equation, Inverse Probl. Sci. Eng. 13 (2005), no. 4, 411–431. CrossrefGoogle Scholar

  • [12]

    B. Han, H. S. Fu and H. Liu, A homotopy method for well-log constraint waveform inversion, Geophys. 72 (2006), no. 1, R1–R7. Web of ScienceGoogle Scholar

  • [13]

    B. Han, J. Q. Shao and B. Q. Guo, A widely convergent method for determining the distributed parameters of an elliptical equation, Appl. Math. Comput. 60 (1994), no. 2–3, 139–146. Google Scholar

  • [14]

    M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math. 72 (1995), no. 1, 21–37. CrossrefGoogle Scholar

  • [15]

    K. Ito, B. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Problems 28 (2012), no. 2, Article ID 025003. Web of ScienceGoogle Scholar

  • [16]

    B. Kaltenbacher, Some Newton-type methods for the regularization of nonlinear ill-posed problems, Inverse Problems 13 (1997), no. 3, 729–753. CrossrefGoogle Scholar

  • [17]

    B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems, Radon Ser. Comput. Appl. Math. 6, Walter de Gruyter, Berlin, 2008. Google Scholar

  • [18]

    M. Liu and F. Ma, Numerical method for inverse scattering in two-layered background in near-field optics, Inverse Probl. Sci. Eng. 23 (2015), no. 1, 130–154. CrossrefWeb of ScienceGoogle Scholar

  • [19]

    M. Liu, D. Zhang, X. Zhou and F. Liu, The Fourier–Bessel method for solving the Cauchy problem connected with the Helmholtz equation, J. Comput. Appl. Math. 311 (2017), 183–193. CrossrefWeb of ScienceGoogle Scholar

  • [20]

    Y. Liu, B. Han and Y. X. Dou, A homotopy-projection method for the parameter estimation problems, Inverse Probl. Sci. Eng. 16 (2008), no. 2, 141–157. Web of ScienceCrossrefGoogle Scholar

  • [21]

    M. Makino and S. Oishi, Constructive analysis for infinite-dimensional nonlinear systems—infinite-dimensional version of homotopy method, Electron. Comm. Japan Part III Fund. Electron. Sci. 74 (1991), no. 8, 1–10. CrossrefGoogle Scholar

  • [22]

    O. Scherzer, H. W. Engl and K. Kunisch, Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. Numer. Anal. 30 (1993), no. 6, 1796–1838. CrossrefGoogle Scholar

  • [23]

    T. Schröter, On a special class of nonlinear Fredholm integral equations of the first kind, Computing 58 (1997), no. 3, 259–279. CrossrefGoogle Scholar

  • [24]

    T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski, Regularization Methods in Banach Spaces, Radon Ser. Comput. Appl. Math. 10, Walter de Gruyter, Berlin, 2012. Google Scholar

  • [25]

    S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. CrossrefGoogle Scholar

  • [26]

    L. T. Watson, Globally convergent homotopy methods: A tutorial, Appl. Math. Comput. 31 (1989), 369–396. Google Scholar

  • [27]

    L. T. Watson, Globally convergent homotopy algorithms for nonlinear systems of equations, Nonlinear Dynam. 1 (1990), no. 2, 143–191. CrossrefGoogle Scholar

  • [28]

    J. Weese, A regularization method for nonlinear ill-posed problems, Comput. Phys. Commun. 77 (1993), no. 3, 429–440. CrossrefGoogle Scholar

  • [29]

    E. Zeidler, Nonlinear Functional Analysis and its Applications. II/A, Springer, New York, 1990. Google Scholar

  • [30]

    J. Zhao and T. Liu, A wavelet multiscale-adaptive homotopy method for the inverse problem of nonlinear diffusion equation, Inverse Probl. Sci. Eng. 23 (2015), no. 4, 617–634. Web of ScienceCrossrefGoogle Scholar

  • [31]

    J. Zhao, T. Liu and S. Liu, An adaptive homotopy method for permeability estimation of a nonlinear diffusion equation, Inverse Probl. Sci. Eng. 21 (2013), no. 4, 585–604. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-11-21

Revised: 2018-10-07

Accepted: 2018-11-19

Published Online: 2018-12-18

Published in Print: 2019-08-01


Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 11626230

Award identifier / Grant number: 11771180

The first author was supported by the National Natural Science Foundation of China (NSFC) Grant 11626230, and the second author was supported by the National Natural Science Foundation of China (NSFC) Grant 11771180.


Citation Information: Journal of Inverse and Ill-posed Problems, Volume 27, Issue 4, Pages 487–499, ISSN (Online) 1569-3945, ISSN (Print) 0928-0219, DOI: https://doi.org/10.1515/jiip-2017-0108.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in