Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Inverse and Ill-posed Problems

Editor-in-Chief: Kabanikhin, Sergey I.


IMPACT FACTOR 2018: 0.881
5-year IMPACT FACTOR: 1.170

CiteScore 2018: 0.91

SCImago Journal Rank (SJR) 2018: 0.430
Source Normalized Impact per Paper (SNIP) 2018: 0.969

Mathematical Citation Quotient (MCQ) 2018: 0.66

Online
ISSN
1569-3945
See all formats and pricing
More options …
Volume 27, Issue 4

Issues

Inverse nodal problems for integro-differential operators with a constant delay

Murat Sat
  • Corresponding author
  • Department of Mathematics, Faculty of Science and Art, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chung Tsun Shieh
Published Online: 2018-12-19 | DOI: https://doi.org/10.1515/jiip-2018-0088

Abstract

We study inverse nodal problems for Sturm–Liouville operator perturbed by a Volterra integral operator with a constant delay. We have estimated nodal points and nodal lengths for this operator. Moreover, by using these data, we have shown that the potential function of this operator can be established uniquely.

Keywords: Inverse nodal problem; differential operator with delay; integro-differential operators

MSC 2010: 34A55; 34K29; 34K10; 47G20

References

  • [1]

    A. Bayramov, S. Öztürk Uslu and S. Kizilbudak C̣aliskan, Computation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument, Appl. Math. Comput. 191 (2007), no. 2, 592–600. Web of ScienceGoogle Scholar

  • [2]

    N. P. Bondarenko, An inverse problem for an integro-differential operator on a star-shaped graph, Math. Methods Appl. Sci. 41 (2018), no. 4, 1697–1702. CrossrefWeb of ScienceGoogle Scholar

  • [3]

    N. P. Bondarenko, Partial inverse problems for the Sturm–Liouville operator on a star-shaped graph with mixed boundary conditions, J. Inverse Ill-Posed Probl. 26 (2018), no. 1, 1–12. CrossrefWeb of ScienceGoogle Scholar

  • [4]

    N. Bondarenko and S. Buterin, On recovering the Dirac operator with an integral delay from the spectrum, Results Math. 71 (2017), no. 3–4, 1521–1529. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    N. Bondarenko and S. Buterin, An inverse spectral problem for integro-differential Dirac operators with general convolution kernels, Appl. Anal. (2018), 10.1080/00036811.2018.1508653. Google Scholar

  • [6]

    N. Bondarenko and V. Yurko, An inverse problem for Sturm–Liouville differential operators with deviating argument, Appl. Math. Lett. 83 (2018), 140–144. CrossrefWeb of ScienceGoogle Scholar

  • [7]

    N. Bondarenko and V. Yurko, Partial inverse problems for the Sturm–Liouville equation with deviating argument, Math. Methods Appl. Sci. (2018), 10.1002/mma.5265. Web of ScienceGoogle Scholar

  • [8]

    P. J. Browne and B. D. Sleeman, Inverse nodal problems for Sturm–Liouville equations with eigenparameter dependent boundary conditions, Inverse Problems 12 (1996), no. 4, 377–381. CrossrefGoogle Scholar

  • [9]

    S. A. Buterin, On an inverse spectral problem for first-order integro-differential operators with discontinuities, Appl. Math. Lett. 78 (2018), 65–71. CrossrefWeb of ScienceGoogle Scholar

  • [10]

    S. A. Buterin and A. E. Choque Rivero, On inverse problem for a convolution integro-differential operator with Robin boundary conditions, Appl. Math. Lett. 48 (2015), 150–155. Web of ScienceCrossrefGoogle Scholar

  • [11]

    S. A. Buterin, M. Pikula and V. A. Yurko, Sturm–Liouville differential operators with deviating argument, Tamkang J. Math. 48 (2017), no. 1, 61–71. Web of ScienceGoogle Scholar

  • [12]

    S. A. Buterin and M. Sat, On the half inverse spectral problem for an integro-differential operator, Inverse Probl. Sci. Eng. 25 (2017), no. 10, 1508–1518. Web of ScienceCrossrefGoogle Scholar

  • [13]

    S. A. Buterin and C.-T. Shieh, Incomplete inverse spectral and nodal problems for differential pencils, Results Math. 62 (2012), no. 1–2, 167–179. CrossrefWeb of ScienceGoogle Scholar

  • [14]

    S. A. Buterin and S. V. Vasiliev, On uniqueness of recovering the convolution integro-differential operator from the spectrum of its non-smooth one-dimensional perturbation, Bound. Value Probl. 2018 (2018), Paper No. 55. Web of ScienceGoogle Scholar

  • [15]

    S. A. Buterin and V. A. Yurko, An inverse spectral problem for Sturm–Liouville operators with a large constant delay, Anal. Math. Phys. (2017), 10.1007/s13324-017-0176-6. Web of ScienceGoogle Scholar

  • [16]

    G. Freiling and V. A. Yurko, Inverse problems for Sturm–Liouville differential operators with a constant delay, Appl. Math. Lett. 25 (2012), no. 11, 1999–2004. CrossrefWeb of ScienceGoogle Scholar

  • [17]

    I. M. Gel’fand and B. M. Levitan, On the determination of a differential equation from its spectral function, Izv. Akad. Nauk SSSR. Ser. Mat. 15 (1951), 309–360. Google Scholar

  • [18]

    O. H. Hald and J. R. McLaughlin, Solutions of inverse nodal problems, Inverse Problems 5 (1989), no. 3, 307–347. CrossrefGoogle Scholar

  • [19]

    J. Hale, Theory of Functional Differential Equations, 2nd ed., Springer, New York, 1977. Google Scholar

  • [20]

    Y. V. Kuryshova, The inverse spectral problem for integrodifferential operators, Mat. Zametki 81 (2007), no. 6, 855–866. Google Scholar

  • [21]

    Y. V. Kuryshova and C.-T. Shieh, An inverse nodal problem for integro-differential operators, J. Inverse Ill-Posed Probl. 18 (2010), no. 4, 357–369. Web of ScienceGoogle Scholar

  • [22]

    J. R. McLaughlin, Inverse spectral theory using nodal points as data—a uniqueness result, J. Differential Equations 73 (1988), no. 2, 354–362. CrossrefGoogle Scholar

  • [23]

    A. D. Myshkis, Linear Differential Equations with a Delay Argument, 2nd ed., Nauka, Moscow, 1972. Google Scholar

  • [24]

    S. B. Norkin, Second Order Differential Equations with a Delay Argument, Nauka, Moscow, 1965. Google Scholar

  • [25]

    J. P. Pinasco and C. Scarola, A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line, J. Differential Equations 261 (2016), no. 2, 1000–1016. CrossrefWeb of ScienceGoogle Scholar

  • [26]

    Y. P. Wang, Inverse problems for a class of Sturm–Liouville operators with the mixed spectral data, Oper. Matrices 11 (2017), no. 1, 89–99. Web of ScienceGoogle Scholar

  • [27]

    Y. P. Wang, K. Y. Lien and C.-T. Shieh, Inverse problems for the boundary value problem with the interior nodal subsets, Appl. Anal. 96 (2017), no. 7, 1229–1239. CrossrefWeb of ScienceGoogle Scholar

  • [28]

    Y. P. Wang, K. Y. Lien and C. T. Shieh, On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter, Bound. Value Probl. 2018 (2018), Paper No. 28. Web of ScienceGoogle Scholar

  • [29]

    Y. P. Wang, C. T. Shieh and H. Y. Miao, Reconstruction for Sturm–Liouville equations with a constant delay with twin-dense nodal subsets, Inverse Probl. Sci. Eng. (2018), 10.1080/17415977.2018.1489803. Web of ScienceGoogle Scholar

  • [30]

    C.-F. Yang, Inverse nodal problems for the Sturm–Liouville operator with a constant delay, J. Differential Equations 257 (2014), no. 4, 1288–1306. CrossrefWeb of ScienceGoogle Scholar

  • [31]

    X.-F. Yang, A solution of the inverse nodal problem, Inverse Problems 13 (1997), no. 1, 203–213. CrossrefGoogle Scholar

  • [32]

    V. Yurko, Inverse nodal problems for Sturm–Liouville operators on star-type graphs, J. Inverse Ill-Posed Probl. 16 (2008), no. 7, 715–722. Web of ScienceGoogle Scholar

About the article

Received: 2018-09-22

Accepted: 2018-11-15

Published Online: 2018-12-19

Published in Print: 2019-08-01


Citation Information: Journal of Inverse and Ill-posed Problems, Volume 27, Issue 4, Pages 501–509, ISSN (Online) 1569-3945, ISSN (Print) 0928-0219, DOI: https://doi.org/10.1515/jiip-2018-0088.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in