Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Intelligent Systems

Editor-in-Chief: Fleyeh, Hasan


CiteScore 2017: 0.96

SCImago Journal Rank (SJR) 2017: 0.193
Source Normalized Impact per Paper (SNIP) 2017: 0.481

Online
ISSN
2191-026X
See all formats and pricing
More options …
Volume 24, Issue 3

Issues

A Collaborative Workflow for Computer-Aided Design in Ambient Assisted Living: The ASIM Project

Nicolas Ferry / Pascal Berruet / Willy Allegre / Laurent Augu
Published Online: 2015-03-10 | DOI: https://doi.org/10.1515/jisys-2014-0168

Abstract

In 2014, the worldwide context is that the population is increasingly both expanding and aging in industrial countries. In contrast, the personal health levels of individuals could decrease. Although retirement homes and health-care centers assume most of the demand, they will most probably overflow in the next few years. One of the current solutions is e-Health, which involves biomedical monitoring but also home automation functions to compensate for disabilities that tend to increase with age. In this context, several domains have to be merged while respecting the entire ecosystem: the users, their needs and environment, but also all the various actors/experts involved in this process. The issue, however, is that enormous effort is required to combine the multiple expert domains because these can be antinomic. Hence, this paper proposes a collaborative workflow that brings together these different actors and generates the control/command application. Applying model-driven engineering, this workflow makes a clear distinction between people’s health requirements, the home automation functions, and the user interface points of view. Thus, it allows experts in each field to adapt their system in terms of the user’s needs, disability, and health state.

Keywords: E-Health; smart medical home; ambient assisted living; ageing care telehealth services; model-driven engineering

Bibliography

  • [1]

    G. D. Abowd, A. F. Bobick, I. A. Essa, E. D. Mynatt and W. A. Rogers, The aware home: a living laboratory for technologies for successful aging, in: Proceedings of the AAAI-02 Workshop – Automation as Caregiver, pp. 1–7, Eighteenth National Conference on Artificial Intelligence, AAAI Alberta, Canada, 2002.Google Scholar

  • [2]

    A. M. Adami, T. L. Hayes and M. Pavel, Unobtrusive monitoring of sleep patterns, in: Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, vol. 2, pp. 1360–1363, 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Cancun, Mexico, 2003.Google Scholar

  • [3]

    W. Allegre, T. Buger and P. Berruet, Model-driven flow for assistive home automation system design, in: Proceedings of the 18th IFAC World Congress, vol. 18, pp. 6466–6471, International Federation of Automatic Control (IFAC), Italy, 2011.Google Scholar

  • [4]

    A. Bahga and V. K. Madisetti, A cloud-based approach for interoperable electronic health records (EHRs), IEEE J. Biomed. Health Inform. 17 (2013), 894–906.CrossrefWeb of ScienceGoogle Scholar

  • [5]

    N. Blanpain and O. Chardon, Projections de population 2007–2060 pour la France métropolitaine, Insee Résultats – Société n° 117, 2010. http://www.insee.fr/fr/themes/document.asp?ref_id=projpop0760, Accessed 20 March, 2014.

  • [6]

    G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon and J. Vanderdonckt, A unifying reference framework for multi-target user interfaces, Interact. Comput. 15 (2003), 289–308.Google Scholar

  • [7]

    B. Chikhaoui, S. Wang and H. Pigot, A new algorithm based on sequential pattern mining for person identification in ubiquitous environments, in: Proceedings of the Fourth Int. Workshop on Knowledge Discovery form Sensor Data (ACM SensorKDD’10), pp. 25–28, ACM, Washington, DC, 2010.Google Scholar

  • [8]

    D. J. Cook, M. Youngblood, E. O. Heierman III, K. Gopalratnam, S. Rao, A. Litvin and F. Khawaja, MavHome: an agent-based smart home, in: Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, pp. 521–524, IEEE, San Diego, USA, 2003.Google Scholar

  • [9]

    S. K. Das, D. J. Cook, A. Battacharya, E. O. Heierman III and T. Y. Lin, The role of prediction algorithms in the MavHome smart home architecture, IEEE Wirel. Commun. 9 (2002), 77–84.CrossrefGoogle Scholar

  • [10]

    N. Ferry and J. -B. Crampes, Le SNI: un modèle de haut niveau pour la conception et le maquettage des IHM, e-TI Revue – la revue électronique des technologies d’information, N°5, Toulouse, 2008. http://www.revue-eti.netdocument.php?id=1979, Accessed 10 November, 2014.

  • [11]

    J. Guerrero Garcia, J. M. Gonzalez Calleros and, J. Vanderdonckt, A theoretical survey of user interface description languages: complementary results, in: 2nd Int. Workshop on User Interface Extensible Markup Language UsiXML’2011, pp. 229–236, supported by Thales Research & technology Lisbon, Portugal, 2011.Google Scholar

  • [12]

    S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura and E. Jansen, The Gator Tech Smart House: a programmable pervasive space, Computer 38 (2005), 50–60.CrossrefGoogle Scholar

  • [13]

    S. Intille, C. Kukla and X. Ma, Eliciting user preferences using image-based experience sampling and reflection, in: CHI’02 Extended Abstracts on Human Factors in Computing Systems, pp. 738–739, ACM, Minneapolis, USA, 2002.Google Scholar

  • [14]

    R. Kadouche, H. Pigot, B. Abdulrazaka and S. Giroux, Support vector machines for inhabitant identification in smart houses, Ubiq. Intell. Comput. 6406 (2010), 83–95.Google Scholar

  • [15]

    N. Komninos, S. Fengos, N. Lazarou, M. -A. Fengou, G. Mantas and D. Lymberopoulos, A new framework architecture for next generation e-Health services, IEEE J. Biomed. Health Inform. 17 (2013), 9–18.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    I. Korhonen, J. Pärkkä and M. V. Gils, Health monitoring in the home of the future, IEEE Eng. Med. Biol. Magaz. 22 (2003), 66–73.CrossrefGoogle Scholar

  • [17]

    J. B. Lézoray, M. T. Segarra, A. Phung-Khac, A. Thépaut, J. M. Gilliot and A. Beugnard, A design process enabling adaptation in pervasive heterogeneous contexts, Person. Ubiq. Comput. 15 (2011), 353–363.Web of ScienceGoogle Scholar

  • [18]

    A. Mihailidis, B. Carmichael and J. Boger, The use of computer vision in an intelligent environment to support aging-in-place, safety, and independence in the home, IEEE Trans. Inform. Technol. Biomed. 8 (2004), 238–247.CrossrefGoogle Scholar

  • [19]

    M. C. Mozer, The neural network house: an environment hat adapts to its inhabitants, in: Proceedings of AAAI Spring Symp. on Intelligent Environments, pp. 110–114, AAAI, Palo Alto, USA, 1998.Google Scholar

  • [20]

    F. Paterno, C. Santoro and L. D. Spano, MARIA: a universal, declarative, multiple abstraction-level language for service-oriented applications in ubiquitous environments, ACM Trans. Comput.-Human Interact. 16 (2009), Article 19.Web of ScienceGoogle Scholar

  • [21]

    P. Rashidi and A. Mihailidis, A survey on ambient-assisted living tools for older adults, IEEE J. Biomed. Health Inform. 17 (2013), 579–591.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    N. Torabi and V. C. M. Leung, Realization of public M-Health service in license-free spectrum, IEEE J. Biomed. Health Inform. 17 (2013), 19–29.CrossrefWeb of ScienceGoogle Scholar

  • [23]

    T. T. B. Truong, F.F. de Lamotte and J. Diguet, Proactive remote health-care based on multimedia and home automation services, in: Proceedings of the 5th IEEE CASE, pp. 385–390, IEEE, Bangalore, India, 2009.Google Scholar

  • [24]

    D. Zhang and M. MoUuari, Aware home understanding life activities, in: Toward a Human Friendly Assistive Environment: ICOST, pp. 186–193, IO Press, Singapore, 2004.Google Scholar

  • [25]

    N. Zouba, F. Brémond, M. Thonnat, A. Anfosso, E. Pascual, P. Mallea, V. Mailland and O. Guerin, A computer system to monitor older adults at home: preliminary results, Gerontechnology 8 (2009), 129–139.CrossrefGoogle Scholar

About the article

Corresponding author: Pascal Berruet, Lab-STICC, University of South Brittany, BP 92116, 56321 Lorient Cedex, France, e-mail:


Received: 2014-11-07

Published Online: 2015-03-10

Published in Print: 2015-08-01


Citation Information: Journal of Intelligent Systems, Volume 24, Issue 3, Pages 343–360, ISSN (Online) 2191-026X, ISSN (Print) 0334-1860, DOI: https://doi.org/10.1515/jisys-2014-0168.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in