Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Intelligent Systems

Editor-in-Chief: Fleyeh, Hasan

CiteScore 2017: 0.96

SCImago Journal Rank (SJR) 2017: 0.193
Source Normalized Impact per Paper (SNIP) 2017: 0.481

See all formats and pricing
More options …
Volume 24, Issue 4


Application of Image Processing in Fruit and Vegetable Analysis: A Review

Shiv Ram Dubey
  • Corresponding author
  • GLA University – Computer Engineering and Applications, 17KM Stone, NH-2, Chaumuhan, Mathura, Uttar Pradesh 281406, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anand Singh Jalal
  • GLA University – Computer Engineering and Applications, 17KM Stone, NH-2, Chaumuhan, Mathura, Uttar Pradesh 281406, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-14 | DOI: https://doi.org/10.1515/jisys-2014-0079


Images are an important source of data and information in the agricultural sciences. The use of image-processing techniques has outstanding implications for the analysis of agricultural operations. Fruit and vegetable classification is one of the major applications that can be utilized in supermarkets to automatically detect the kinds of fruits or vegetables purchased by customers and to determine the appropriate price for the produce. Training on-site is the underlying prerequisite for this type of arrangement, which is generally caused by the users having little or no expert knowledge. We explored various methods used in addressing fruit and vegetable classification and in recognizing fruit disease problems. We surveyed image-processing approaches used for fruit disease detection, segmentation and classification. We also compared the performance of state-of-the-art methods under two scenarios, i.e., fruit and vegetable classification and fruit disease classification. The methods surveyed in this paper are able to distinguish among different kinds of fruits and their diseases that are very alike in color and texture.

Keywords: Image processing; fruit analysis; fruit disease detection; color; shape; texture


  • [1]

    A. Arefi, A. M. Motlagh, K. Mollazade and R. F. Teimourlou, Recognition and localization of ripen tomato based on machine vision, Asian J. Crop Sci. 5 (2011), 1144–1149.Google Scholar

  • [2]

    S. Arivazhagan, R. N. Shebiah, S. S. Nidhyanandhan and L. Ganesan, Fruit recognition using color and texture features, J. Emerg. Trends Comput. Inform. Sci. 1 (2010), 90–94.Google Scholar

  • [3]

    B. S. Bennedsen and D. L. Peterson, Performance of a system for apple surface defect identification in near-infrared images, Biosyst. Eng. 90 (2005), 419–431.Google Scholar

  • [4]

    B. S. Bennedsen, D. L. Peterson and A. Tabb, Identifying defects in images of rotating apples, Comput. Electron. Agr. 48 (2005), 92–102.CrossrefGoogle Scholar

  • [5]

    R. M. Bolle, J. H. Connell, N. Haas, R. Mohan and G. Taubin, Veggievision: a produce recognition system, in: Proceedings of the 3rd IEEE Workshop on Applications of Computer Vision, pp. 1–8, Sarasota, USA, 1996.Google Scholar

  • [6]

    T. Brosnan and D.-W. Sun, Inspection and grading of agricultural and food products by computer vision systems – a review, Comput. Electron. Agr. 36 (2002), 193–213.CrossrefGoogle Scholar

  • [7]

    T. Brosnan and D.-W. Sun, Improving quality inspection of food products by computer vision – a review, J. Food Eng. 61 (2004), 3–16.CrossrefGoogle Scholar

  • [8]

    D. M. Bulanon, T. F. Burks and V. Alchanatis, Study of temporal variation in citrus canopy using thermal imaging for citrus fruit detection, Biosyst. Eng. 101 (2008), 161–171.Google Scholar

  • [9]

    D. M. Bulanon, T. F. Burks and V. Alchanatis, Image fusion of visible and thermal images for fruit detection, Biosyst. Eng. 103 (2009a), 12–22.Google Scholar

  • [10]

    D. M. Bulanon, T. F. Burks and V. Alchanatis, Improving fruit detection for robotic fruit harvesting, in: ISHS Acta Horticulturae 824: International Symposium on Application of Precision Agriculture for Fruits and Vegetables, pp. 329–336, 2009.Google Scholar

  • [11]

    M. T. Chowdhury, M. S. Alam, M. A. Hasan and M. I. Khan, Vegetables detection from the glossary shop for the blind, IOSR J. Electr. Electron. Eng. 8 (2013), 43–53.Google Scholar

  • [12]

    T. G. Crowe and M. J. Delwiche, Real-time defect detection in fruit – part I: Design concepts and development of protoype hardware, T. Am. Soc. Agr. Biol. Eng. 39 (1996), 2299–2308.Google Scholar

  • [13]

    T. G. Crowe and M. J. Delwiche, Real-time defect detection in fruit – part II: an algorithm and performance of a protoype system, T. Am. Soc. Agri. Biol. Eng. 39 (1996), 2309–2317.CrossrefGoogle Scholar

  • [14]

    L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten and J. A. F. Piernac, Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review, Appl. Spectrosc. Rev. 48 (2013), 142–159.CrossrefGoogle Scholar

  • [15]

    A. Danti, M. Madgi and B. S. Anami, Mean and range color features based identification of common Indian leafy vegetables. Int. J. Sign. Proc. Image Proc. Pattern Recogn. 5 (2012), 151–160.Google Scholar

  • [16]

    S. R. Dubey, Automatic recognition of fruits and vegetables and detection of fruit diseases, Unpublished Master’s Theses, GLA University Mathura, India, 2012.Google Scholar

  • [17]

    S. R. Dubey and A. S. Jalal, Robust approach for fruit and vegetable classification, Procedia Eng. 38 (2012), 3449–3453.CrossrefGoogle Scholar

  • [18]

    S. R. Dubey and A. S. Jalal, Detection and classification of apple fruit diseases using complete local binary patterns, in: Proceedings of the 3rd International Conference on Computer and Communication Technology, MNNIT Allahabad, India, pp. 346–351, 2012.Google Scholar

  • [19]

    S. R. Dubey and A. S. Jalal, Adapted approach for fruit disease identification using images, Int. J. Comput. Vision Image Proc. 2 (2012), 51–65.Google Scholar

  • [20]

    S. R. Dubey and A. S. Jalal, Species and variety detection of fruits and vegetables from images, Int. J. Appl. Pattern Recog. 1 (2013), 108–126.CrossrefGoogle Scholar

  • [21]

    S. R. Dubey and A. S. Jalal, Fruit disease recognition using improved sum and difference histogram from images, Int. J. Appl. Pattern Recog. 1 (2014), 199–220.CrossrefGoogle Scholar

  • [22]

    F. A. Faria, J. A. dos Santos, A. Rocha and R. S. Torres, Automatic classifier fusion for produce recognition, in: Proceeding of 25th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 152–259, 2012.Google Scholar

  • [23]

    L.-G. Fernando, A.-G. Gabriela, J. Blasco, N. Aleixos and J.-M. Valiente, Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach, Comput. Electr. Agr. 71 (2010), 189–197.CrossrefGoogle Scholar

  • [24]

    A. L. V. Gabriel and J. M. Aguilera, Automatic detection of orientation and diseases in blueberries using image analysis to improve their postharvest storage quality, Food Control 33 (2013), 166–173.CrossrefGoogle Scholar

  • [25]

    R. Gonzalez and R. Woods, Digital image processing,3rd edition, Prentice-Hall, Upper Saddle River, NJ, USA, 2007.Google Scholar

  • [26]

    Z. Guo, L. Zhang and D. Zhang, A completed modeling of local binary pattern operator for texture classification, IEEE T. Image Process. 19 (2010), 1657–1663.CrossrefGoogle Scholar

  • [27]

    A. Haidar, H. Dong and N. Mavridis, Image-based date fruit classification, in: Proceedings of the 4th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, pp. 357–363, 2012.Google Scholar

  • [28]

    J. Hartman, Apple fruit diseases appearing at harvest, Plant Pathology Fact Sheet, College of Agriculture, University of Kentucky. Retrieved December 2012 from http://www.ca.uky.edu/agcollege/plantpathology/ext_files/PPFShtml/PPFS-FR-T-2.pdf, 2010.

  • [29]

    R. Jimenez, A. K. Jain, R. Ceres and J. L. Pons, Automatic fruit recognition: a survey and new results using range/attenuation images, Pattern Recogn. 32 (1999), 1719–1736.CrossrefGoogle Scholar

  • [30]

    S. Kanakaraddi, P. Iliger, A. Gaonkar, M. Alagoudar and A. Prakash, Analysis and grading of pathogenic disease of chilli fruit using image processing, in: Proceedings of the International Conference on Advances in Engineering & Technology, pp. 46–50, 2014.Google Scholar

  • [31]

    D. G. Kim, T. F. Burks, J. Qin and D. M. Bulanon, Classification of grapefruit peel diseases using color texture feature analysis, Int. J. Agr. Biol. Eng. 2 (2009), 41–50.Google Scholar

  • [32]

    M. S. Kim, A. M. Lefcourt, K. Chao, Y. R. Chen, I. Kim and D. E. Chan, Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging, T. Am. Soc. Agr. Eng. 45 (2002), 2027–2037.Google Scholar

  • [33]

    M. S. Kim, A. M. Lefcourt, Y. R. Chen, I. Kim, D. E. Chan and K. Chao, Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part II. Application of hyperspectral fluorescence imaging, T. Am. Soc. Agr. Eng. 45 (2002), 2039–2047.Google Scholar

  • [34]

    O. Kleynen, V. Leemans and M.-F. Destain, Development of a multi-spectral vision system for the detection of defects on apples, J. Food Eng. 69 (2005), 41–49.CrossrefGoogle Scholar

  • [35]

    V. Leemans, H. Magein and M.-F. Destain, Defect segmentation on ‘golden delicious’ apples by using colour machine vision, Comput. Electron. Agr. 20 (1998), 117–130.CrossrefGoogle Scholar

  • [36]

    V. Leemans, H. Magein and M.-F. Destain, Defect segmentation on ‘jonagold’ apples using colour vision and a Bayesian classification method, Comput. Electron. Agr. 23 (1999), 43–53.CrossrefGoogle Scholar

  • [37]

    Q. Li, M. Wang and W. Gu, Computer vision based system for apple surface defect detection, Comput. Electron. Agr. 36 (2002), 215–223.CrossrefGoogle Scholar

  • [38]

    J. Li, X. Rao, F. Wang, W. Wu and Y. Ying, Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods, Postharvest Biol. Tec. 82 (2013), 59–69.CrossrefGoogle Scholar

  • [39]

    A. C. L. Lino, J. Sanches and I. M. D. Fabbro, Image processing techniques for lemons and tomatoes classification, Bragantia 67 (2008), 785–789.CrossrefGoogle Scholar

  • [40]

    Y. Liu, B. Chen and J. Qiao, Development of a machine vision algorithm for recognition of peach fruit in natural scene, T. Am. Soc. Agr. Biol. Eng. 54 (2011), 695–702.Google Scholar

  • [41]

    J. J. Lopez, C. Maximo and A. Emanuel, Computer-based detection and classification of flaws in citrus fruits, Neural Comput. Appl. 20 (2011), 975–981.CrossrefGoogle Scholar

  • [42]

    D. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, O. L. García-Navarrete and J. Blasco, Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment, Food Bioprocess Tech. 5 (2012), 1121–1142.CrossrefGoogle Scholar

  • [43]

    R. Lu, Detection of bruises on apples using near-infrared hyperspectral imaging, T. Am. Soc. Agr. Eng. 46 (2003), 523–530.Google Scholar

  • [44]

    P. M. Mehl, K. Chao, M. Kim and Y.-R. Chen, Detection of defects on selected apple cultivars using hyperspectral and multispectral image analysis, Appl. Eng. Agr. 18 (2002), 219–226.Google Scholar

  • [45]

    P. M. Mehl, Y.-R. Chen, M. S. Kim and D. E. Chen, Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations, J. Food Eng. 61 (2004), 67–81.CrossrefGoogle Scholar

  • [46]

    T. Ojala, M. Pietikäinen and T. T. Mäenpää, Multiresolution gray-scale and rotation invariant texture classification with local binary pattern, IEEE T. Pattern Anal. 24 (2002), 971–987.CrossrefGoogle Scholar

  • [47]

    C. Ouyang, D. Li, J. Wang, S. Wang and Y. Han, The research of the strawberry disease identification based on image processing and pattern recognition, Int. Fed. Info. Proc. 392 (2013), 69–77.Google Scholar

  • [48]

    H. E. Panli, Fruit surface defects detection and classification based on attention model, J. Comput. Info. Sys. 8 (2012), 4233–4240.Google Scholar

  • [49]

    G. Pass, R. Zabih and J. Miller, Comparing images using color coherence vectors, in: Proceedings of the ACM Multimedia, pp. 1–14, 1997.Google Scholar

  • [50]

    H. N. Patel, R. K. Jain and M. V. Joshi, Fruit detection using improved multiple features based algorithm, Int. J. Comp. Appl. 13 (2011), 1–5.Google Scholar

  • [51]

    A. Patrasa, N. P. Bruntona, G. Downeya, A. Rawsona, K. Warrinerb and C. Gernigonc, Application of principal component and hierarchical cluster analysis to classify fruits and vegetables commonly consumed in Ireland based on in vitro antioxidant activity, J. Food Compos. Anal. 24 (2011), 250–256.CrossrefGoogle Scholar

  • [52]

    J. D. Pujari, R. Yakkundimath and A. S. Byadgi, Grading and classification of anthracnose fungal disease of fruits based on statistical texture features, Int. J. Advanced Sci. Tech. 52 (2013), 121–132.Google Scholar

  • [53]

    J. D. Pujari, R. Yakkundimath and A. S. Byadgi, Reduced color and texture features based identification and classification of affected and normal fruits’ images, Int. J. Agr. Food Sci. 3 (2013), 119–127.Google Scholar

  • [54]

    J. D. Pujari, R. Yakkundimath and A. S. Byadgi, Recognition and classification of produce affected by identically looking powdery mildew disease, Acta Tech. Agr. 17 (2014), 29–34.Google Scholar

  • [55]

    R. Pydipati, T. F. Burks and W. S. Lee, Identification of citrus disease using color texture features and discriminant analysis, Comput. Electron. Agr. 52 (2006), 49–59.CrossrefGoogle Scholar

  • [56]

    J. Qin, F. Burks, M. A. Ritenour and W. G. Bonn, Detection of citrus canker using hyper-spectral reflectance imaging with spectral information divergence, J. Food Eng. 93 (2009), 183–191.CrossrefGoogle Scholar

  • [57]

    M. H. Rahman, M. R. Pickering, D. Kerr, C. J. Boushey and E. J. Delp, A new texture feature for improved food recognition accuracy in a mobile phone based dietary assessment system, in: Proceedings of the IEEE International Conference on Multimedia and Expo Workshops, pp. 418–423, 2012.Google Scholar

  • [58]

    M. J. Roberts, D. Schimmelpfennig, E. Ashley and M. Livingston, The value of plant disease early-warning systems: a case study of USDA’s soybean rust coordinated framework, Economic Research Service, 18, United States Department of Agriculture, Retrieved December 2011, from http://www.ers.usda.gov/media/330972/err18_1_.pdf, 2006.

  • [59]

    A. Rocha, C. Hauagge, J. Wainer and D. Siome, Automatic fruit and vegetable classification from images, Comput. Electron. Agr. 70 (2010), 96–104.CrossrefGoogle Scholar

  • [60]

    T. F. Schatzki, R. P. Haff, R. Young, I. Can, L.-C. Le and N. Toyofuku, Defect detection in apples by means of x-ray imaging, T. Am. Soc. Agr. Eng. 40 (1997), 1407–1415.Google Scholar

  • [61]

    W. C. Seng and S. H. Mirisaee, A new method for fruits recognition system, in: Proceedings of International Conference on Electrical Engineering and Informatics, pp. 130–134, 2009.Google Scholar

  • [62]

    R. Stehling, M. Nascimento and A. Falcao, A compact and efficient image retrieval approach based on border/interior pixel classification, in: Proceedings of the ACM Conference on Information and Knowledge Management, pp. 102–109, 2002.Google Scholar

  • [63]

    M. Suresha, K. S. Sandeep Kumar and G. Shiva Kumar, Texture features and decision trees based vegetables classification, in: IJCA Proceedings on National Conferecne on Advanced Computing and Communications, pp. 21–26, 2012.Google Scholar

  • [64]

    Y. Tian, C. Zhao, S. Lu and X. Guo, SVM-based multiple classifier system for recognition of wheat leaf diseases, in: Proceedings of the World Automation Congress, pp. 189–193, 2012.Google Scholar

  • [65]

    D. Unay and B. Gosselin, Automatic defect detection of ‘jonagold’ apples on multi-spectral images: a comparative study, Postharvest Biol. Tech. 42 (2006), 271–279.CrossrefGoogle Scholar

  • [66]

    M. Unser, Sum and difference histograms for texture classification, IEEE T. Pattern Anal. 8 (1986), 118–125.CrossrefGoogle Scholar

  • [67]

    R. Vadivambal and D. S. Jayas, Applications of thermal imaging in agriculture and food industry – a review, Food Bioprocess Tech. 4 (2011), 186–199.CrossrefGoogle Scholar

  • [68]

    Y. Zhang and L. Wu, Classification of fruits using computer vision and a multiclass support vector machine, Sensors 12 (2012), 489–505.Google Scholar

About the article

Corresponding author: Shiv Ram Dubey, GLA University – Computer Engineering and Applications, 17KM Stone, NH-2, Chaumuhan, Mathura, Uttar Pradesh 281406, India, e-mail:

Received: 2014-04-01

Published Online: 2014-11-14

Published in Print: 2015-12-01

Citation Information: Journal of Intelligent Systems, Volume 24, Issue 4, Pages 405–424, ISSN (Online) 2191-026X, ISSN (Print) 0334-1860, DOI: https://doi.org/10.1515/jisys-2014-0079.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Anuja Bhargava and Atul Bansal
Journal of King Saud University - Computer and Information Sciences, 2018

Comments (0)

Please log in or register to comment.
Log in