Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Intelligent Systems

Editor-in-Chief: Fleyeh, Hasan


CiteScore 2018: 1.03

SCImago Journal Rank (SJR) 2018: 0.188
Source Normalized Impact per Paper (SNIP) 2018: 0.533

Online
ISSN
2191-026X
See all formats and pricing
More options …
Volume 26, Issue 1

Issues

BAT and Hybrid BAT Meta-Heuristic for Quality of Service-Based Web Service Selection

Prashanth Podili / K.K. Pattanaik
  • Corresponding author
  • A-117, Atal Bihari Vajpayee-Indian Institute of Information Technology and Management Gwalior, Morena Link Road, Gwalior, MP 474015, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Prashanth Singh Rana
Published Online: 2016-01-22 | DOI: https://doi.org/10.1515/jisys-2015-0032

Abstract

Efficient QoS-based service selection from a pool of functionally substitutable web services (WS) for constructing composite WS is important for an efficient business process. Service composition based on diverse QoS requirements is a multi-objective optimization problem. Meta-heuristic techniques such as genetic algorithm (GA), particle swarm optimization (PSO), and variants of PSO have been extensively used for solving multi-objective optimization problems. The efficiency of any such meta-heuristic techniques lies with their rate of convergence and execution time. This article evaluates the efficiency of BAT and Hybrid BAT algorithms against the existing GA and Discrete PSO techniques in the context of service selection problems. The proposed algorithms are tested on the QWS data set to select the best fit services in terms of maximum aggregated end-to-end QoS parameters. Hybrid BAT is found to be efficient for service composition.

Keywords: Web service; composition; meta-heuristic; particle swarm optimization (PSO); BAT algorithm; Hybrid BAT algorithm

Bibliography

  • [1]

    A. Albreshne, P. Fuhrer and J. Pasquier, Web services orchestration and composition, IEEE Computer Society Press, Los Alamitos, CA, USA, 2009.Google Scholar

  • [2]

    E. Al-Masri and Q. H. Mahmoud, Discovering the best web service, poster, in: 16th International Conference on World Wide Web (WWW), pp. 1257–1258, 2007.Google Scholar

  • [3]

    E. Al-Masri and Q. H. Mahmoud, QoS-based discovery and ranking of web services, in: IEEE 16th International Conference on Computer Communications and Networks (ICCCN), pp. 529–534, 2007.Google Scholar

  • [4]

    M. A. Amiri and H. Serajzadeh, Effective web service composition using particle swarm optimization algorithm, in: 2012 Sixth International Symposium on Telecommunications (IST). IEEE, 2012.Google Scholar

  • [5]

    G. Canfora, M. Di Penta, R. Esposito and M. L. Villani, A lightweight approach for QoS-aware service composition, in: Proceedings of 2nd International Conference on Service Oriented Computing (ICSOC‘04), 2004.Google Scholar

  • [6]

    S. Carbas and O. Hasancebi, Optimum design of steel space frames via bat inspired algorithm, in: 10th World Congress on Structural and Multidisciplinary Optimization, 2013.Google Scholar

  • [7]

    I. Fister Jr., I. Fister and J. Brest, A hybrid artificial bee colony algorithm for graph 3-coloring, in: Swarm and Evolutionary Computation, pp. 66–74, Springer, Berlin, Heidelberg, 2012.Google Scholar

  • [8]

    I. Fister Jr., D. Fister and X.-S. Yang, A hybrid bat algorithm, preprint (2013). http://arXiv:1303.6310.

  • [9]

    A. H. Gandomi, X. S. Yang, A. H. Alavi and S. Talatahari, Bat algorithm for constrained optimization tasks, Neural Comput. Appl. 22 (2013), 1239–1255.Google Scholar

  • [10]

    X. Hong and Z. Li, Particle swarm algorithm for the quality of service-oriented web services selection, in: Second International Symposium on Knowledge Acquisition and Modeling, 2009. KAM’09, Vol. 3. IEEE, 2009.Google Scholar

  • [11]

    G. Kang, L. Jianxun, T. Mingdong and X. Yu, An effective dynamic web service selection strategy with global optimal QoS based on particle swarm optimization algorithm, in: Proceedings of the IEEE 26th International Conference on Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012. IEEE, 2012.Google Scholar

  • [12]

    D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm, J. Global Optim. 39 (2007), 459–471.Google Scholar

  • [13]

    D. Karaboga and B. Basturk, On the performance of articial bee colony (abc) algorithm, Appl. Soft Comput. 8 (2008), 687–697.Google Scholar

  • [14]

    S. Liu, Y. Liu, N. Jing, G. Tang, and Y. Tang, A dynamic web service selection strategy with QoS global optimization based on multi-objective genetic algorithm, in: Grid and Cooperative Computing-GCC 2005, pp. 84–89, Springer, Berlin, Heidelberg, 2005.Google Scholar

  • [15]

    S. A. Ludwig, Applying particle swarm optimization to quality-of-service-driven web service composition, in: IEEE 26th International Conference on Advanced Information Networking and Applications, AINA, 2012. IEEE, 2012.Google Scholar

  • [16]

    Y. Ma and C. Zhang, Quick convergence of genetic algorithm for QoS-driven web service selection, Comput. Networks 52 (2008), 1093–1104.CrossrefGoogle Scholar

  • [17]

    L. Min, et al., A quality of service (QoS)-aware execution plan selection approach for a service composition process, Future Generation Comp. Syst. 28 (2012), 1080–1089.Google Scholar

  • [18]

    A. Mohammad and R. Thomass, Combining global optimization with local selection for efficient QoS-aware service composition, in: Proceedings of the IEEE International Conference on Web Services, pp. 881–890, Los Angeles, CA, USA, 2009.Google Scholar

  • [19]

    R. Y. M. Nakamura, et al. BBA: a binary bat algorithm for feature selection in: 25th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 2012. IEEE, 2012.Google Scholar

  • [20]

    P. W. Tsai, J. S. Pan, B. Y. Liao, M. J. Tsai and V. Istanda, Bat algorithm inspired algorithm for solving numerical optimization problems, Appl. Mech. Mater. 148 (2012), 134–137.Google Scholar

  • [21]

    R. Storn and K. Price, Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optimization 11 (1997), 341–359.Google Scholar

  • [22]

    W. Wang, et al., An improved particle swarm optimization algorithm for QoS-aware web service selection in service oriented communication, Int. J. Comput. Intell. Syst. 3 (2010), 18–30.Google Scholar

  • [23]

    X. S. Yang, Nature-inpsired metaheursitic algorithms, Luniver Press, Frome, UK, 2008.Google Scholar

  • [24]

    X.-S. Yang, A new metaheuristic bat-inspired algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010), J. R. Gonzalez, et al., Eds., Stud. Comput. Intell. 284, pp. 65–74, Springer, Berlin, 2010.

  • [25]

    X. S. Yang, Review of meta-heuristics and generalised evolutionary walk algorithm, Int. J. Bio-Inspired Comput. 3 (2011), 77–84.Google Scholar

  • [26]

    X.-S. Yang, Bat algorithm: literature review and applications, Int. J. Bio-Inspired Comput. 5 (2013), 141–149.Google Scholar

  • [27]

    X. S. Yang and S. Deb, Cuckoo search via Levy flights, in: Proceedings of the World Congress on Nature & Biologically Inspired Computing (NaBic 2009), pp. 210–214, IEEE Publications, USA, 2009.Google Scholar

  • [28]

    X. S. Yang and S. Deb, Eagle strategy using Levy walk and firefly algorithms for stochastic optimization, in: Nature Inspired Cooperative Strategies for Optimization (NICSO2010), C. Cruz, J. R. Gonzalez, D. A. Pelta, G. Terrazas, Eds., Stud. Comput. Intell. 284, pp. 101–111, 2010.

  • [29]

    T. Yu, Y. Zhang and K.-J. Lin, Efficient algorithms for Web services selection with end-to-end QoS constraints, ACM Trans. Web (TWEB) 1 (2007), 6.Google Scholar

  • [30]

    L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam and H. Chang, QoS-aware middleware for web services composition, IEEE Trans. Software Eng. 30 (2004), 311–327.Google Scholar

About the article

Corresponding author: K.K. Pattanaik, A-117, Atal Bihari Vajpayee-Indian Institute of Information Technology and Management Gwalior, Morena Link Road, Gwalior, MP 474015, India, e-mail:


Received: 2015-04-13

Published Online: 2016-01-22

Published in Print: 2017-01-01


Citation Information: Journal of Intelligent Systems, Volume 26, Issue 1, Pages 123–137, ISSN (Online) 2191-026X, ISSN (Print) 0334-1860, DOI: https://doi.org/10.1515/jisys-2015-0032.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in