Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Intelligent Systems

Editor-in-Chief: Fleyeh, Hasan

CiteScore 2018: 1.03

SCImago Journal Rank (SJR) 2018: 0.188
Source Normalized Impact per Paper (SNIP) 2018: 0.533

See all formats and pricing
More options …
Volume 27, Issue 2


An Extensive Review on Data Mining Methods and Clustering Models for Intelligent Transportation System

Sesham Anand
  • Corresponding author
  • Department of Computer Science and Engineering, Maturi Venkata Subba Rao Engineering College, Nadergul, Hyderabad, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Padmanabham
  • Department of Computer Science and Engineering, Bharat Institute of Engineering and Technology, Hyderabad, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Govardhan / Rajesh H. Kulkarni
Published Online: 2017-03-07 | DOI: https://doi.org/10.1515/jisys-2016-0159


Data mining techniques support numerous applications of intelligent transportation systems (ITSs). This paper critically reviews various data mining techniques for achieving trip planning in ITSs. The literature review starts with the discussion on the contributions of descriptive and predictive mining techniques in ITSs, and later continues on the contributions of the clustering techniques. Being the largely used approach, the use of cluster analysis in ITSs is assessed. However, big data analysis is risky with clustering methods. Thus, evolutionary computational algorithms are used for data mining. Though unsupervised clustering models are widely used, drawbacks such as selection of optimal number of clustering points, defining termination criterion, and lack of objective function also occur. Eventually, various drawbacks of evolutionary computational algorithm are also addressed in this paper.

Keywords: Data mining; ITS; clustering; evolutionary computation; unsupervised


  • [1]

    G. Agamennoni, J. I. Nieto and E. M. Nebot, Robust inference of principal road paths for Intelligent Transportation Systems, IEEE Trans. Intell. Transport. Syst. 12 (2011), 298–308.CrossrefGoogle Scholar

  • [2]

    W. Andreas, W. Shangbo, B. Guido and J. Peter, Traffic congestion estimation service exploiting mobile assisted positioning schemes in GSM networks, Proc. Earth Planet. Sci. 1 (2009), 1385–1392.CrossrefGoogle Scholar

  • [3]

    S. M. Arabzad, M. Ghorbani and R. T. Moghaddam, An evolutionary algorithm for a new multi-objective location-inventory model in a distribution network with transportation modes and third-party logistics providers, Int. J. Prod. Res. 53 (2014), 1038–1050.Google Scholar

  • [4]

    M. Z. Arokhlo, A. Selamat, S. Z. M. Hashim and H. Afkhami, Modeling of route planning system based on Q value-based dynamic programming with multi-agent reinforcement learning algorithms, Eng. Appl. Artif. Intell. 29 (2014), 163–177.CrossrefGoogle Scholar

  • [5]

    M. T. Asif, J. Dauwels, C. Y. Goh, A. Oran, E. Fathi, M. Xu, M. M. Dhanya, N. Mitrovic and P. Jaillet, Spatiotemporal patterns in large-scale traffic speed prediction, IEEE Trans. Intell. Transport. Syst. 15 (2014), 794–804.CrossrefGoogle Scholar

  • [6]

    S. Bamberg, S. Fujii, M. Friman and T. Garling, Behaviour theory and soft transport policy measures, Transport Policy 18 (2011), 228–235.CrossrefGoogle Scholar

  • [7]

    P. K. Bhuyan and K. V. K. Rao, Defining los criteria of urban streets using GPS data: k-means and k-medoid clustering in Indian context, Transport 27 (2011), 149–157.Google Scholar

  • [8]

    V. Brett and M. Roe, The potential for the clustering of the maritime transport sector in the Greater Dublin Region, Marit. Pol. Mgmt. 37 (2010), 1–16.CrossrefGoogle Scholar

  • [9]

    Y. Byon, B. Abdulhai and A. Shalaby, Real-time transportation mode detection via tracking Global Positioning System mobile devices, J. Intell. Transport. Syst. 13 (2009), 161–170.CrossrefGoogle Scholar

  • [10]

    F. Caicedo, C. Blazquez and P. Miranda, Prediction of parking space availability in real time, Expert Syst. Appl. 39 (2012), 7281–7290.CrossrefGoogle Scholar

  • [11]

    S. W. Chiou, A cutting plane projection method for bi-level area traffic control optimization with uncertain travel demand, Appl. Math. Comput. 266 (2015), 390–403.Google Scholar

  • [12]

    T. G. Crainic, M. Gendreau and J. Y. Potvin, Intelligent freight-transportation systems: assessment and the contribution of operations research, Transport. Res. 17 (2009), 541–557.CrossrefGoogle Scholar

  • [13]

    W. Davidson, R. Donnelly, P. Vovsha, J. Freedman, S. Ruegg, J. Hicks, J. Castiglione and R. Picado, Synthesis of first practices and operational research approaches in activity-based travel demand modeling, Transport. Res. Pt. A Policy Pract. 41 (2007), 464–488.CrossrefGoogle Scholar

  • [14]

    Y. Duvarci and S. Mizokami, A suppressed demand analysis method of the transportation disadvantaged in policy making, Transport. Plann. Technol. 32 (2009), 187–214.CrossrefGoogle Scholar

  • [15]

    N. E. E. Faouzi, H. Leung and A. Kurian, Data fusion in intelligent transportation systems: progress and challenges – a survey, Inform. Fusion 12 (2011), 4–10.CrossrefGoogle Scholar

  • [16]

    R. N. Fries, M. R. Gahrooei, M. Chowdhury and A. J. Conway, Meeting privacy challenges while advancing intelligent transportation systems, Transport. Res. Pt. C 25 (2012), 34–45.CrossrefGoogle Scholar

  • [17]

    M. Friman, L. Larhult and T. Garling, An analysis of soft transport policy measures implemented in Sweden to reduce private car use, Transportation 40 (2013), 109–129.CrossrefGoogle Scholar

  • [18]

    F. Guo and L. A. Hall, A zone design methodology for national freight origin – destination data and transportation modeling, Transport. Plann. Technol. 37 (2014), 738–756.CrossrefGoogle Scholar

  • [19]

    M. Hatzopoulou and E. J. Miller, Linking an activity-based travel demand model with traffic emission and dispersion models: transport’s contribution to air pollution in Toronto, Transport. Res. Pt. D Transport Environ. 15 (2010), 315–325.CrossrefGoogle Scholar

  • [20]

    W. He, K. Hwang and D. Li, Intelligent carpool routing for urban ridesharing by mining GPS trajectories, IEEE Trans. Intell. Transport. Syst. 15 (2014), 2286–2296.CrossrefGoogle Scholar

  • [21]

    W. He, G. Yan and L. D. Xu, Developing vehicular data cloud services in the IoT environment, IEEE Trans. Indust. Inform. 10 (2014), 1587–1595.CrossrefGoogle Scholar

  • [22]

    C. Y. Hsu, C. S. Yang, L. C. Yu, C. F. Lin, H. H. Yao, D. Y. Chen, K. R. Lai and P. C. Chang, Development of a cloud-based service framework for energy conservation in a sustainable intelligent transportation system, Int. J. Prod. Econ. 164 (2014), 454–461.Google Scholar

  • [23]

    Y. Hu, Z. Xiang and H. Chen, Selection and peer-review under responsibility of Chinese Overseas Transportation Association (COTA), Proc. Soc. Behav. Sci. 96 (2013), 1861–1867.Google Scholar

  • [24]

    B. Huang, Q. Wu and F. B. Zhan, A shortest path algorithm with novel heuristics for dynamic transportation networks, Int. J. Geogr. Inform. Sci. 21 (2007), 625–644.CrossrefGoogle Scholar

  • [25]

    X. Huang, Y. Tan and X. He, An intelligent multi feature statistical approach for the discrimination of driving conditions of a hybrid electric vehicle, IEEE Trans. Intell. Transport. Syst. 12 (2011), 453.CrossrefGoogle Scholar

  • [26]

    C. Jacob and B. Abdulhai, Machine learning for multi-jurisdictional optimal traffic corridor control, Transport. Res. 44 (2010), 53–64.Google Scholar

  • [27]

    A. Jarasuniene, Research into intelligent transport systems, Transport 22 (2007), 61–67.Google Scholar

  • [28]

    X. Jia and S. Yindong, Setting scheduled trip time based on AVL data, J. Transport. Syst. Eng. Inform. Technol. 12 (2012), 39–45.CrossrefGoogle Scholar

  • [29]

    J. Jiancheng, L. Lili and D. Bo, ETC data based traffic information mining techniques, J. Transport. Syst. Eng. Inform. Technol. 10 (2010), 57–63.CrossrefGoogle Scholar

  • [30]

    Y. Jiang, S. C. Wong, H. W. Ho, P. Zhang, R. Liu and A. Sumalee, A dynamic traffic assignment model for a continuum transportation system, Transport. Res. Pt. B 45 (2011), 343–363.CrossrefGoogle Scholar

  • [31]

    D. Kannan, K. Govindan and H. Soleimanic, Artificial immune system and sheep flock algorithms for two-stage fixed-charge transportation problem, Optimization 63 (2014), 1465–1479.CrossrefGoogle Scholar

  • [32]

    M. G. Karlaftis and E. I. Vlahogianni, Statistical methods versus neural networks in transportation research: differences, similarities and some insights, Transport. Res. Pt. C 19 (2011), 387–399.CrossrefGoogle Scholar

  • [33]

    M. Kompil and H. M. Celik, Modelling trip distribution with fuzzy and genetic fuzzy systems, Transport. Plann. Technol. 36 (2013), 170–200.CrossrefGoogle Scholar

  • [34]

    K. Kumar, M. Parida and V. K. Katiyar, Short term traffic flow prediction in heterogeneous condition using artificial neural network, Transport. Plann. Technol. 36 (2013), 170–200.Google Scholar

  • [35]

    W. H. Lee, S. S. Tseng and S. H. Tsai, A knowledge based real-time travel time prediction system for urban network, Expert Syst. Appl. 36 (2009), 4239–4247.CrossrefGoogle Scholar

  • [36]

    W. H. Lee, S. S. Tseng and W. Y. Shieh, Collaborative real-time traffic information generation and sharing framework for the intelligent transportation system, Inform. Sci. 180 (2010), 62–70.CrossrefGoogle Scholar

  • [37]

    W. H. Lee, S. S. Tseng, J. L. Shieh and H. H. Chen, Discovering traffic bottlenecks in an urban network by spatiotemporal datamining on location-based services, IEEE Trans. Intell. Transport. Syst. 12 (2011), 1047–1056.CrossrefGoogle Scholar

  • [38]

    C. S. Li and M. C. Chen, A datamining based approach for travel time prediction in freeway with non-recurrent congestion, Neurocomputing 133 (2014), 74–83.CrossrefGoogle Scholar

  • [39]

    L. Li, X. Su, Y. Wanga, Y. Lin, Z. Li and Y. Li, Robust causal dependence mining in big data network and its application to traffic flow predictions, Transport. Res. Pt. C 58 (2015), 292–307.CrossrefGoogle Scholar

  • [40]

    Y. Liang, M. L. Reyes and J. D. Lee, Real-time detection of driver cognitive distraction using support vector machines, IEEE Trans. Intell. Transport. Syst. 8 (2007), 340–350.CrossrefGoogle Scholar

  • [41]

    H. Z. Lin, H. P. Lo and X. J. Chen, Lifestyle classifications with and without activity-travel patterns, Transport. Res. Pt. A Policy Pract. 43 (2009), 626–638.CrossrefGoogle Scholar

  • [42]

    K. Malecki, S. Iwan and K. Kijewska, Influence of intelligent transportation systems on reduction of the environmental negative impact of urban freight transport based on Szczecin example, Proc. Soc. Behav. Sci. 151 (2014), 215–229.CrossrefGoogle Scholar

  • [43]

    N. Monteiro, R. Rossetti, P. Campos and Z. Kokkinogenis, A framework for a multimodal transportation network: an agent-based model approach, Transport. Res. Proc. 4 (2014), 213–227.CrossrefGoogle Scholar

  • [44]

    L. Nahar and Z. Sultana, A new travel time prediction method for intelligent transportation system, IOSR J. Comput. Eng. 16 (2014), 24–30.CrossrefGoogle Scholar

  • [45]

    E. Necula, Analyzing traffic patterns on street segments based on GPS data using R, Transport. Res. Proc. 10 (2015), 276–285.CrossrefGoogle Scholar

  • [46]

    O. Nezerenko, O. Koppe and T. Tuisk, Cluster approach in organization of transportation in the Baltic Sea region, Transport 30 (2015), 1–13.Google Scholar

  • [47]

    R. D. Ona, G. Lopez, F. J. D. Rios and J. D. Ona, Cluster analysis for diminishing heterogeneous opinions of service quality public transport passengers, Proc. Soc. Behav. Sci. 162 (2014), 459–466.CrossrefGoogle Scholar

  • [48]

    H. J. Park, P. H. Kim, M. Marsico and N. Rasheed, Datamining strategies for real-time control in New York City, Proc. Comput. Sci. 32 (2014), 109–116.CrossrefGoogle Scholar

  • [49]

    T. Pei, W. Wang, H. Zhang, T. Ma, Y. Du and C. Zhou, Density-based clustering for data containing two types of points, Int. J. Geogr. Inform. Sci. 29 (2015), 175–193.CrossrefGoogle Scholar

  • [50]

    F. C. Pereira, F. Rodrigues and M. B. Akiva, Using data from the web to predict public transport arrivals under special events scenarios, J. Intell. Transport. Syst. 19 (2015), 273–288.CrossrefGoogle Scholar

  • [51]

    I. Roman, G. Madinabeitia, L. Jimenez, G. A. Molina and J. A. Ternero, Experiences applying RM-ODP principles and techniques to intelligent transportation system architectures, Comput. Stand. Interf. 35 (2013), 338–347.CrossrefGoogle Scholar

  • [52]

    Q. Shi and M. A. Aty, Big data applications in real-time traffic operation and safety monitoring and improvement on urban expressways, Transport. Res. Pt. C 58 (2015), 380–394.CrossrefGoogle Scholar

  • [53]

    O. Trullols, M. Fiore, C. Casetti, C. F. Chiasserini and J. M. B. Ordinas, Planning roadside infrastructure for information dissemination in intelligent transportation systems, Comput. Commun. 33 (2010), 432–442.CrossrefGoogle Scholar

  • [54]

    A. Vij and K. Shankari, When is big data big enough? Implications of using GPS-based surveys for travel demand analysis, Transport. Res. Pt. C Emerg. Technol. 56 (2015), 446–462.CrossrefGoogle Scholar

  • [55]

    C. Wang, M. Quddus, M. Enoch, T. Ryley and L. Davison, Exploring the propensity to travel by demand responsive transport in the rural area of Lincolnshire in England, Case Stud. Transport Policy 3 (2015), 129–136.CrossrefGoogle Scholar

  • [56]

    X. Wang, Y. Ma, J. Di, Y.L. Murphey, S. Qiu, J. Kristinsson, J. Meyer, F. Tseng and T. Feldkamp, Building efficient probability transition matrix using machine learning from big data for personalized route prediction, Proc. Comput. Sci. 53 (2015), 284–291.CrossrefGoogle Scholar

  • [57]

    K. M. Weber, B. H. Schuh, H. Godoe and R. Roeste, ICT-enabled system innovations in public services: experiences from intelligent transport systems, Telecommun. Policy 38 (2013), 539–557.Google Scholar

  • [58]

    A. Wibisono, W. Jatmiko, H. A. Wisesa, B. Hardjono and P. Mursanto, Traffic big data prediction and visualization using Fast Incremental Model Trees-Drift Detection (FIMT-DD), Knowl. Based Syst. 93 (2016), 33–46.CrossrefGoogle Scholar

  • [59]

    O. Wolfson, A. P. Sistla and B. Xu, The TranQuyl language for data management in intelligent transportation, Transport. Res. Pt. C 23 (2012), 3–13.CrossrefGoogle Scholar

  • [60]

    J. Xia and M. Chen, Defining traffic flow phases using Intelligent Transportation Systems-generated data, J. Intell. Transport. Syst. 11 (2007), 15–24.CrossrefGoogle Scholar

  • [61]

    P. Yadav, Document-document similarity matrix and multiple-kernel fuzzy C-means algorithm based web document clustering for information retrieval, Int. J. Adv. Res. Comput. Commun. Eng. 3 (2014), 8317–8321.Google Scholar

  • [62]

    P. Yadav, SR-K-Means clustering algorithm for semantic information retrieval, Int. J. Invent. Comput. Sci. Eng. 1 (2014), 17–24.Google Scholar

  • [63]

    Z. Yangfan, J. Shunping, G. Wei and L. Shuang, Evaluation on traffic congestion mitigation in Beijing with variable message signs, J. Transport. Syst. Eng. Inform. Technol. 14 (2014), 201–206.CrossrefGoogle Scholar

  • [64]

    Y. Yin, S. M. Madanat and X. Y. Lu, Robust improvement schemes for road networks under demand uncertainty, Eur. J. Oper. Res. 198 (2009), 470–479.CrossrefGoogle Scholar

  • [65]

    L. Yuwei and N. Pengfei, Externalities, transport networks and the economic growth of urban clusters, Special issue: regional convergence and coordinated urban growth, Soc. Sci. China 34 (2013), 174–194.CrossrefGoogle Scholar

  • [66]

    J. Zhang, F. Y. Wang, K. Wang, W. H. Lin, X. Xu and C. Chen, Data-driven intelligent transportation systems: a survey, IEEE Trans. Intell. Transport. Syst. 12 (2011), 1624–1639.CrossrefGoogle Scholar

  • [67]

    X. Zhang, E. Onieva, A. Perallos, E. Osaba and V. C. S. Lee, Hierarchical fuzzy rule-based system optimized with genetic algorithms for short term traffic congestion prediction, Transport. Res. Pt. C 43 (2014), 127–142.CrossrefGoogle Scholar

  • [68]

    X. Zheng and S. Wang, Study on the method of road transport management information datamining based on pruning Eclat Algorithm and MapReduce, Proc. Soc. Behav. Sci. 138 (2014), 757–766.CrossrefGoogle Scholar

  • [69]

    J. Zhu, L. Shubin and L. Xiaoqing, Parameters calibration of traffic simulation model based on datamining, J. Transport. Syst. Eng. Inform. Technol. 12 (2012), 28–33.CrossrefGoogle Scholar

  • [70]

    F. Zonga and M. Wang, Understanding parking decisions with a Bayesian network, Transport. Plann. Technol. 38 (2015), 585–600.CrossrefGoogle Scholar

About the article

Received: 2016-06-15

Published Online: 2017-03-07

Published in Print: 2018-03-28

Citation Information: Journal of Intelligent Systems, Volume 27, Issue 2, Pages 263–273, ISSN (Online) 2191-026X, ISSN (Print) 0334-1860, DOI: https://doi.org/10.1515/jisys-2016-0159.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Fanxiao Liu, Zhanbo Sun, Peitong Zhang, Qiyuan Peng, and Qingjie Qiao
Journal of Advanced Transportation, 2018, Volume 2018, Page 1

Comments (0)

Please log in or register to comment.
Log in