Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Journal of Intelligent Systems

Editor-in-Chief: Fleyeh, Hasan

4 Issues per year


CiteScore 2016: 0.39

SCImago Journal Rank (SJR) 2015: 0.189
Source Normalized Impact per Paper (SNIP) 2015: 0.593

Online
ISSN
2191-026X
See all formats and pricing
In This Section
Ahead of print

Issues

A Novel Hybrid ABC-PSO Algorithm for Effort Estimation of Software Projects Using Agile Methodologies

Thanh Tung Khuat
  • Corresponding author
  • The University of Danang, University of Science and Technology, Danang, Vietnam
  • Email:
/ My Hanh Le
  • The University of Danang, University of Science and Technology, Danang, Vietnam
Published Online: 2017-03-23 | DOI: https://doi.org/10.1515/jisys-2016-0294

Abstract:

In modern software development processes, software effort estimation plays a crucial role. The success or failure of projects depends greatly on the accuracy of effort estimation and schedule results. Many studies focused on proposing novel models to enhance the accuracy of predicted results; however, the question of accurate estimation of effort has been a challenging issue with regards to researchers and practitioners, especially when it comes to projects using agile methodologies. This study aims at introducing a novel formula based on team velocity and story point factors. The parameters of this formula are then optimized by employing swarm optimization algorithms. We also propose an improved algorithm combining the advantages of the artificial bee colony and particle swarm optimization algorithms. The experimental results indicated that our approaches outperformed methods in other studies in terms of the accuracy of predicted results.

Keywords:: Software effort estimation; agile software development; user story; particle swarm optimization; artificial bee colony; swarm optimization algorithm

MSC 2010: 68T20; 68T35; 68N01; 68W25

Bibliography

  • [1]

    P. Abrahamsson and J. Koskela, Extreme programming: a survey of empirical data from a controlled case study, in: Proceedings of International Symposium on Empirical Software Engineering, pp. 73–82, 2004.Google Scholar

  • [2]

    S. Andreas, K. Martin and D. Reiner, Effort estimation for Agile software development projects, in: Proceedings of 5th Software Measurement European Forum, pp. 113–126, 2008.Google Scholar

  • [3]

    F. V. D. Bergh and A. P. Engelbrecht, A cooperative approach to particle swarm optimization, IEEE Trans. Evolut. Comput. 8 (2004), 225–239.Google Scholar

  • [4]

    E. Bijami, M. Shahriari-kahkeshi and H. Zamzam, Simultaneous coordinated tuning of power system stabilizers using artificial bee colony algorithm, in: Proceedings of 26th International Power System Conference, pp. 1–8, 2011.Google Scholar

  • [5]

    B. Boehm, Software Engineering Economics, Prentice Hall, Englewood Cliffs, 1981.Google Scholar

  • [6]

    L. Briand and I. Wieczorek, Resource Modeling in Software Engineering, Encyclopedia of Software Engineering, Wiley, Chichester, 2002.Google Scholar

  • [7]

    E. Coelho and A. Basu, Effort estimation in agile software development using story points, Int. J. Appl. Inform. Syst. 3 (2012), 7–10.Google Scholar

  • [8]

    S. D. Conte, H. E. Dunsmore and V. Y. Shen, Software Engineering Metrics and Models, Benjamin-Cummings Publishing Co., Inc., Menlo Park, CA, 1986.Google Scholar

  • [9]

    R. C. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43, 1995.Google Scholar

  • [10]

    D. Eck, B. Brundick, T. Fettig, J. Dechoretz and J. Ugljesa, Parametric Estimating Handbook, 4th edition, The International Society of Parametric Analysis (ISPA), Vienna, VA, 2009.Google Scholar

  • [11]

    M. El-Abd, A hybrid ABC-SPSO algorithm for continuous function optimization, in: Proceedings of IEEE Symposium on Swarm Intelligence (SIS), 2011.Google Scholar

  • [12]

    A. E. D. Hamouda, Using agile story points as an estimation technique in CMMI organizations, in: Agile Conference (AGILE), pp. 16–23, 2014.Google Scholar

  • [13]

    T. J. Hsieh and W. C. Yeh, Knowledge discovery employing grid scheme least squares support vector machines based on orthogonal design bee colony algorithm, IEEE Trans. Syst. Manage. Cybern. Part B Cybern. 41 (2011), 1198–1212.Google Scholar

  • [14]

    I. Hussain, L. Kosseim and O. Ormandjieva, Approximation of cosmic functional size to support early effort estimation in agile, Data Knowl. Eng. 85 (2013), 2–14.Google Scholar

  • [15]

    M. Jorgensen, Forecasting of software development work effort: evidence on expert judgment and formal models, Int. J. Forecast 23 (2007), 449–462.Google Scholar

  • [16]

    D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim. 39 (2007), 459–471.Google Scholar

  • [17]

    D. Karaboga and C. Ozturk, A novel clustering approach: artificial bee colony algorithm, Appl. Soft Comput. 11 (2011), 652–657.Google Scholar

  • [18]

    D. Karaboga, B. Gorkemli, C. Ozturk and N. Karaboga, A comprehensive survey: artificial bee colony (ABC) algorithm and applications, Artif. Intell. Rev. 42 (2014), 21–57.Google Scholar

  • [19]

    S. Keaveney and K. Conboy, Cost estimation in agile development projects, in: Proceedings of the Fourteenth European Conference on Information Systems, pp. 183–197, 2006.Google Scholar

  • [20]

    T. T. Khuat and M. H. Le, An effort estimation approach for agile software development using fireworks algorithm optimized neural network, Int. J. Comput. Sci. Inform. Secur. 14 (2016), 122–130.Google Scholar

  • [21]

    M. S. Kiran and M. Gunduz, A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems, Appl. Soft Comput. 13 (2013), 2188–2203.Google Scholar

  • [22]

    C. Lopez-Martin, A fuzzy logic model for predicting the development effort of short scale programs based upon two independent variables, Appl. Soft Comput. 11 (2011), 724–732.Google Scholar

  • [23]

    J. Lynch, Chaos Manifesto, The Standish Group, Boston [Online] http://www.standishgroup.com/newsroom/chaos_2009.php. Accessed 5 November, 2016.

  • [24]

    A. B. Nassif, D. Ho and L. F. Capretz, Towards an early software estimation using log-linear regression and a multilayer perceptron model, J. Syst. Softw. 86 (2013), 144–160.Google Scholar

  • [25]

    S. Olatunji and A. Selamat, Type-2 fuzzy logic based prediction model of object oriented software maintainability, Intell. Softw. Methodol. Tools Techn. 513 (2015), 329–342.Google Scholar

  • [26]

    A. L. Oliveira, Estimation of software project effort with support vector regression, Neurocomputing 69 (2006), 1749–1753.Google Scholar

  • [27]

    A. Panda, S. M. Satapathy and S. K. Rath, Empirical validation of neural network models for agile software effort estimation based on story points, Proc. Comput. Sci. 25 (2015), 772–781.Google Scholar

  • [28]

    R. Popli and N. Chauhan, Cost and effort estimation in agile software development, in: IEEE International Conference on Optimization, Reliability, and Information Technology (ICROIT), pp. 57–61, 2014.Google Scholar

  • [29]

    L. H. Putnam, A general empirical solution to the macro software sizing and estimating problem, IEEE Trans. Softw. Eng. 4 (1978), 345–361.Google Scholar

  • [30]

    R. S. Rao, S. V. L Narasimham and M. Ramalingaraju, Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm, Int. J. Elect. Power Energy Syst. Eng. 1 (2008), 116–122.Google Scholar

  • [31]

    S. M. Satapathy, A. Panda and S. K. Rath, Story point approach based agile software effort estimation using various SVR kernel methods, in: International Conference on Software Engineering and Knowledge Engineering, pp. 304–307, 2014.Google Scholar

  • [32]

    M. Shepperd and S. MacDonell, Evaluating prediction systems in software project estimation, Inform. Softw. Technol. 54 (2012), 820–827.Google Scholar

  • [33]

    Y. Shi and R. Eberhart, A modified particle swarm optimizer, in: Proceedings of International Conference on IEEE World Congress on Computational Intelligence, pp. 69–73, 1998.Google Scholar

  • [34]

    X. Shi, Y. Li, H. Li, R. Guan, L. Wang and Y. Liang, An integrated algorithm based on artificial bee colony and particle swarm optimization, in: Proceedings of the Sixth International Conference on Natural Computation, 2010.Google Scholar

  • [35]

    R. Silhavy, P. Silhavy and Z. Prokopova, Applied least square regression in use case estimation precision tuning, in: Proceedings of the 4th Computer Science On-line Conference, 2015, pp. 11–17.Google Scholar

  • [36]

    N. Suguna and K. G. Thanushkodi, An independent rough set approach hybrid with artificial bee colony algorithm for dimensionality reduction, Am. J. Appl. Sci. 8 (2011), 261–266.Google Scholar

  • [37]

    F. Valdes and A. Abran, Comparing the estimation performance of the EPCU model with the expert judgment estimation approach using data from industry, Softw. Eng. Res. Manage. Appl. 296 (2010), 227–240.Google Scholar

  • [38]

    S. Wang, Y. Zhang, Z. Dong, S. Du, G. Ji, J. Yan, J. Yang, Q. Wang, C. Feng and P. Phillips, Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection, Int. J. Imaging Syst. Technol. 25 (2015), 153–164.Google Scholar

  • [39]

    S. Wang, Y. Zhang, G. Ji, J. Yang, J. Wu and L. Wei, Fruit classification by wavelet-entropy and feedforward neural network trained by fitness-scaled chaotic ABC and biogeography-based optimization, Entropy 17 (2015), 5711–5728.Google Scholar

  • [40]

    Y. Zhang, S. Wang and G. Ji, A comprehensive survey on particle swarm optimization algorithm and its applications, Math. Probl. Eng. 2015 (2015), Article ID 931256.Google Scholar

  • [41]

    Z. K. Zia, S. K. Tipu and S. K. Zia, An effort estimation model for agile software development, Adv. Comput. Sci. Appl. 2 (2012), 314–324.Google Scholar

About the article

Received: 2016-11-11

Published Online: 2017-03-23


Citation Information: Journal of Intelligent Systems, ISSN (Online) 2191-026X, ISSN (Print) 0334-1860, DOI: https://doi.org/10.1515/jisys-2016-0294.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in