Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Landscape Ecology

The Journal of Czech National Chapter of the Association for Landscape Ecology (CZ-IALE)

3 Issues per year


CiteScore 2016: 0.24

SCImago Journal Rank (SJR) 2016: 0.179
Source Normalized Impact per Paper (SNIP) 2016: 0.280

Open Access
Online
ISSN
1805-4196
See all formats and pricing
More options …

Responses of Vegetation Stages with Woody Dominants to Stress and Disturbance During Succession on Abandoned Tailings in Cultural Landscape

Pavel Kovář / Michal Štefánek / Jakub Mrázek
Published Online: 2012-08-08 | DOI: https://doi.org/10.2478/v10285-012-0037-9

Responses of Vegetation Stages with Woody Dominants to Stress and Disturbance During Succession on Abandoned Tailings in Cultural Landscape

Studies of ecological succession on tailing containments (abandoned sedimentation basins with waste deposited by a factory producing sulphuric acid from pyrite ore) near the village of Chvaletice (Eastern Bohemia, Czech Republic) were carried out since 1973 with increased intensity and complexity between 1986 and 2002 (Kovář 2004). Vegetation cover in its relationships to various factors has been periodically monitored up to now. The abandoned ore-washery deposit is characterized by relative strong toxicity of the sediment material (high heavy metal content) and fluctuations of the microsite conditions up to extreme values (pH, salinity, surface temperatures). Species richness and the courses of some ecological processes are influenced both by availability of plant diaspores (regional species pool) determined with the presence of adequate dispersal mechanisms (anemochory, zoochory) and by the seasonal moderation of environmental variables excluding stress non-tolerant species at extreme epizodes and enabling survival of resistant species during the competition. Long lasting existence of patches without any vegetation together with herbaceous types of stands and woody successional stages create mosaics on the surface plateau. The oldest tree stands (in average 20 - 30 years old) are predominantly formed by Populus tremula and Betula pendula, with minor admixture of Salix sp. div. (mainly S. caprea), Pinus sylvestris, Quercus robur or Cerassus avium, rarely Sarothamnus scoparius. The abundance ratio of two main dominants, aspen and birch, was changed for the benefit of the first one after the summer fire in extremely hot days. The effect of clonality on aspen regeneration and regrowth immediately after the fire disturbance was profitably manifested and it apparently facilitates the present state with aspen prevailing in the most forested tailing places at present, seventeen years after the fire. This fact supports the importance of clonal plant species role during primary succession.

Keywords: Vegetation succession; biodiversity; abandoned tailings; ore-washery sedimentation basin; substrate toxicity; salinity; fluctuation; fire disturbance; pattern of woody dominants; aspen; birch; environmental stress; regeneration; clonality

  • Antosiewicz, D. M. (1992). Adaptations of plants to an environment polluted with heavy metals. Acta Soc. Bot. Polon., 61(2): 281-299.Google Scholar

  • Bergeron, Y. (1991). The influence of island and mainland lakeshore landscapes on boreal forest fire regimes. Ecology, 72: 1980-1992.CrossrefGoogle Scholar

  • Bertness, M. D., Calaway, R. (1994). Positive interactions in communities. Tree, 9:191-193.Google Scholar

  • Braun-Blanquet, J. (1928). Pflanzensoziologie. Springer Verlag, Berlin.Google Scholar

  • Bryndová, I., Kovář, P. (2004). Dynamics of the demographic parameters of the clonal plant Calamagrostis epigejos (L.) Roth in two kinds of industrial deposits (Abandoned sedimentation basins in Bukovina and Chvaletice). In: Kovář, P. (Ed.): Natural Recovery of Human-Made Deposits in Landscape (Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems). pp. 267-276. Academia, PragueGoogle Scholar

  • Bulíček, J., Jindřich, J. (1976). Hydro-economical problems of sedimentation basins. SZN, Prague [in Czech].Google Scholar

  • Dobson, A. P., Bradshaw, A. D. & Baker, A. J. M. (1997). Hopes for the future: restoration ecology and conservation biology. Science, 277: 515-522.CrossrefGoogle Scholar

  • Dost, H. (1972). Acid sulphate soils. Wageningen, IIFLRIGoogle Scholar

  • Ewing, A. L., Engle, D. M. (1988). Effects of late summer fire on tallgrass prairie microclimate and community composition. Am. Midl. Nat., 120: 212-223.Google Scholar

  • Gloaugen, J. C. (1993). Spatio-temporal patterns in post-burn succession on Brittany heathlands. Journal of Vegetation Science, 4: 561-566.Google Scholar

  • Hobbs, R.J. (1999). Restoration of disturbed ecosystems. In: Walker, L.R. (Ed.): Ecosystems of disturbed grounds, Ecosystems of the world 16, pp. 673-687, Elsevier, Amsterdam.Google Scholar

  • Jandová, L., Sklenář, P. & Kovář, P. (2009). Changes of grassland vegetation in surroundings of new railway flyover (Eastern Bohemia, Czech Republic). Part I: Plant communities and permanent habitat plots. Journal of Landscape Ecology, 2(1): 36-57.Google Scholar

  • Jiráčková, M., Dostál, P. (2004). Microsite versus dispersal limitation in primary succession: a case study from an abandoned ore-washery sedimentation basin. In: Kovář, P., (Ed.): Natural Recovery of Human-Made Deposits in Landscape (Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems). pp. 59-76. Academia, PragueGoogle Scholar

  • Jongmann, R. (2008). Ecological networks are an issue for all of us. Journal of Landscape Ecology, 1(1): 7-13.Google Scholar

  • Johnson, E. A. (1992). Fire and vegetation dynamics: studies from the North American boreal forest. Cambridge University Press, Cambridge, N.Y.Google Scholar

  • Kovář, P. (1994). Vegetation monitoring and restoration ecology in landscape: Changes on sediment deposits at Chvaletice (Central Bohemia - Labe River Basin). Příroda, 79-96. [in Czech]Google Scholar

  • Kovář, P. (1999). Biotic interactions and restoration ecology of abandoned sedimentation ponds of toxic materials. In: Kovář, P. (Ed.): Nature and Culture in Landscape Ecology (Experiences for the 3rd Millennium), pp. 290-302, The Karolinum Press, Praha.Google Scholar

  • Kovář, P. (2004): Trends in spontaneous biological renaturation of human-made deposits: Background for restoring management. In: Kovář, P. (Ed.): Natural Recovery of Human-Made Deposits in Landscape (Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems). pp. 337-351. Academia, PragueGoogle Scholar

  • Kovář, P., Herben T. (2004). Small-scale spatiotemporal dynamics of plant cover during the initial phase of primary succession in an abandoned ore-washery sedimentation basin. In: Kovář, P. (Ed.): Natural Recovery of Human-Made Deposits in Landscape (Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems). pp. 277-284. Academia, PragueGoogle Scholar

  • Kovář, P., Štěpánek, J. & Kirschner, J. (2004). Clonal diversity of Calamagrostis epigejos (L.) Roth in relation to type of industrial substrate and successional stage. In: Kovář, P. (Ed.): Natural Recovery of Human-Made Deposits in Landscape (Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems). pp. 285-293. Academia, PragueGoogle Scholar

  • Kovářová, M., Frantík, T. (2004). Decomposition of organic matter on different substrates - laboratory study. In: Kovář, P. (Ed.): Natural Recovery of Human-Made Deposits in Landscape (Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems). pp. 153-175. Academia, PragueGoogle Scholar

  • Lepš, J. (1996). Biostatistics. - Jihočeská univerzita, České Budějovice. [in Czech]Google Scholar

  • Martinková, M., Maděra, P. & Úradníček, L. (2001). Strategy of birch (Betula L.) in substitute stands of the Krušné hory Mts., air-polluted region. Journal of Forest Science, 47 (Special Issue): 87-95.Google Scholar

  • McClanahan, T. R. (1986). The effect of a seed source on primary succession in a forest ecosystem. Vegetatio, 65: 175-178.CrossrefGoogle Scholar

  • McNeilly, T. (1990). Evolutionary lessons from degraded ecosystems. In: Jordan, III W.R., Gilpin, M.E. & Aber, J.D. (Eds.): Restoration ecology. A synthetic approach to ecological research. pp. 271-286. Cambridge University Press, CambridgeGoogle Scholar

  • Menges, E. S., Hawkes C. V. (1998). Interactive effects of fire and microhabitat on plants of Florida Scrub. Ecol. Appl., 8: 935-946.Google Scholar

  • Miller, H. G. (1984). Nutrient cycles in birchwoods. Proceedings of the Royal Society of Edinburgh, 85B: 83-96Google Scholar

  • Montalvo, A. M. (1997). Restoration biology: a population biology perspective. Restoration Ecology, 5: 277-290.CrossrefGoogle Scholar

  • Mrázek, J. (2002). Růst břízy Betula pendula a osiky Populus tremula na toxickém substrátu rudního odkaliště. MSc Thesis. Charles University in Prague, Faculty of Science, Department of Botany, 66 p.Google Scholar

  • Mrázek, J. (2004). Comparison of the growth of dominant trees (Betula pendula, Populus tremula) in primary succession on toxic substrate. In: Kovář, P. (Ed.): Natural Recovery of Human-Made Deposits in Landscape (Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems). pp. 294-299. Academia, PragueGoogle Scholar

  • Palmer, M. A., Ambrose, R. F. & Poff, N. L. (1997). Ecological theory and community restoration ecology. Restoration Ecology, 5: 291-300.CrossrefGoogle Scholar

  • Parker, V. T. (1997). The scale of successional models and restoration objectives. Restoration Ecology, 5: 301-306.CrossrefGoogle Scholar

  • Prach, K., Pyšek, P. (1994). Spontaneous establishment of woody plants in Central European derelict sites and their potential for reclamation. Restoration Ecology, 2: 190-197.CrossrefGoogle Scholar

  • Prach, K., Bastl, M., Konvalinková, P., Kovář, P., Novák, J., Pyšek, P., Řehounková, K. & Sádlo, J. (2008). Vegetation succession in human-made habitats in the Czech Republic - survey of dominant species and stages. Příroda, 26: 5-26. [in Czech]Google Scholar

  • Rauch, O. (2004). Genesis and characteristics of orewaste sulphate soils at Chvaletice. In: Kovář, P. (Ed.): Natural Recovery of Human-Made Deposits in Landscape (Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems). pp. 45-58. Academia, PragueGoogle Scholar

  • Robinson, R. R., Handel, S.N. (1993). Forest restoration on a closed landfills: Rapid addition of new species by bird dispersal. Conservation Biology, 7(2): 271-278.CrossrefGoogle Scholar

  • Schmid, B., Bazzaz, F. A. (1987). Clonal integration and population structure in perennials: Effects of severing rhizome connections. Ecology, 68: 2016-2022.CrossrefGoogle Scholar

  • Smith, R.A.H., Bradshaw, A.D. (1979). The use of heavy metal tolerant plant populations for the reclamation of metalliferous wastes. J. App. Ecol., 16: 595-612.Google Scholar

  • Stoutjesdijk, Ph., Barkman, J. J. (1992). Microclimate, vegetation and fauna. Opulus Press, Uppsala.Google Scholar

  • Štefánek, M. (1999). Obnova vegetace na odkališti po disturbanci požárem. MSc Thesis. Charles University in Prague, Faculty of Science, Department of Botany, 67 p.Google Scholar

  • Štefánek, M. (2004). Secondary succession after fire on an abandoned ore-washery sedimentation basin - different trajectories (A comparison with primary succession). In: Kovář, P. (Ed.): Natural Recovery of Human-Made Deposits in Landscape (Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems). pp. 248-266. Academia, PragueGoogle Scholar

  • Turner, C. L., Blair, J. M., Schartz, R. J. & Neel, J. C. (1997). Soil N and plant responses to fire, topography, and supplemental N in tallgrass prairie. Ecology, 78: 1832-1843.CrossrefGoogle Scholar

  • Urbanska, K. M., Webb, N. R. & Edwards, P. J. (1999). Restoration ecology and sustainable development. Cambridge Univ. Press, Cambridge.Google Scholar

  • Vos, C. C., Opdam, P. (1993). Landscape ecology of a stressed environment. Chapman & Hall, London.Google Scholar

  • Whelan, R. J. (1995). The ecology of fire. Cambridge Studies in Ecology, Cambridge University Press, NY.Google Scholar

  • Walker, L.R., del Moral R. (2003). Primary succession and ecosystem rehabilitation. Cambridge Univ. Press, Cambridge.Google Scholar

About the article


Published Online: 2012-08-08

Published in Print: 2011-01-01


Citation Information: Journal of Landscape Ecology, ISSN (Print) 1803-2427, DOI: https://doi.org/10.2478/v10285-012-0037-9.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in