Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Landscape Ecology

The Journal of Czech National Chapter of the Association for Landscape Ecology (CZ-IALE)

3 Issues per year


CiteScore 2016: 0.24

SCImago Journal Rank (SJR) 2016: 0.179
Source Normalized Impact per Paper (SNIP) 2016: 0.280

Open Access
Online
ISSN
1805-4196
See all formats and pricing
More options …

Field Survey of Dracaena Cinnabari Populations in Firmihin, Socotra Island: Methodology and Preliminary Results

Radim Adolt
  • Forest Management Institute Brandýs nad Labem, NFI Methodology and Analysis, Náměstí Míru 497,767 01 Kroměříž, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Maděra / Josef Abraham / Petr Čupa / Martin Svátek
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Radim Matula
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Šebesta
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Čermák
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Volařík
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomáš Koutecký
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Rejžek
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Šenfeldr
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiří Veska
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hana Habrová
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zdeněk Čermák
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Němec
  • Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/jlecol-2014-0001

Abstract

Between 2010 and 2011 a field survey dedicated to Dracaena cinnabari (DC) population was conducted in Firmihin, Socotra Island (Yemen). It’s main goal was to collect data that would make it possible to unbiasedly estimate main characteristics of the local DC population. Our motivation was to provide reliable information to support decision-making processes as well as other research activities. At the same time we were not aware of a survey which could provide this kind of statistical-sound estimates for the whole population covering an area of almost 700 ha.

This article describes how the survey has been planned and carried out in practice. In addition, we also provide a set of preliminary estimates of the main DC population figures - totals and per hectare densities of stems, overall and partitioned according to predicted crown age. Among estimated parameters there are also mean crown age and proportions of predefined age classes on the total number of living DC stems. These estimates provide an explicit information on age structure of the whole DC population in Firmihin.

Although we collected data on more than one hundred randomly located plots, the reported accuracy of our estimates is still rather limiting. We discuss several possibilities to obtain more accurate results or at least to approach the supposedly lower true variance that can’t be calculated by approximate techniques applied here.

The design and concept of our survey makes it possible to evaluate changes over time on stem by stem bases and to generalize these stem-level details to the whole population. Mortality, regeneration and even change of population’s mean crown age can be estimated from a future repeated survey, which would be extremely useful to draw firm conclusions about the dynamic of the whole DC population in Firmihin.

References

  • Adolt, R., & Pavliš, J. (2004). Age structure and growth of Dracaena cinnabari populations on Socotra. Trees, 18, pp. 43-53.Google Scholar

  • Adolt, R., Habrová, H., & Maděra, P. (2012). Crown age estimation of a monocotyledonous tree species Dracaena cinnabari using logistic regression. Trees, 26, pp. 1287-1298.Google Scholar

  • Attorre, F., Francesconi, F., Taleb, N., Scholte, P., Saed, A., Alfo, M., & Bruno, F. (2007). Will dragonblood survive the next period of climate change? Current and future potential distribution of Dracaena cinnabari (Socotra, Yemen). Biological conservation, 138(3-4), pp. 430-439.Web of ScienceGoogle Scholar

  • Axelrod, D.I. (1975). Evolution and biogeography of madrean-tethyan sclerophyll vegetation. In: Annals of the missouri botanical garden. Missouri Botanical Garden Press.Google Scholar

  • Barabesi, L., & Franceschi, S. (2010). Sampling properties of spatial total estimators under tessellation stratified designs. Environmetrics, (on-line publication).Web of ScienceGoogle Scholar

  • Bellhouse, D., R. (1988). A brief history of random sampling methods. In: Krishnaiah, P., R., & Rao, C., R. (eds): Handbook of statistics, (pp. 1-13), sampling. 6, North Holland.Google Scholar

  • Brown, G., & Mies, B.A. (2012). Vegetation ecology of Socotra. Plant and Vegetation 7., Springers, 382 pp.Google Scholar

  • Buckland, S. T., Anderson, D. R., Burnham, K. P., & Laake, J. L. (1993). Distance sampling: Estimating abundance of biological populations. Chapman and Hall, London.Google Scholar

  • Cassel, C.M., Särndal, C.E., & Wretman, J.H. (1977). Foundations of inference in survey sampling. John Willey & Sons, New York. 192 p.Google Scholar

  • Cochran, W. G. (1977). Sampling techniques. Willey series in probability and mathematical statistics - applied. John Willey & Sons.Google Scholar

  • Cooper, C.6. (2006). Sampling and variance estimation on continuous domains. Environmetrics, 17, pp. 539-553.CrossrefGoogle Scholar

  • Cordy, C., B., & Thompson, C., M. (1995). An application of the deterministic variogram to design-based variance estimation. Mathematical geology, 27, pp. 173-205.CrossrefGoogle Scholar

  • Cordy, C. B. (1993). An extension of the Horwitz-Thompson theorem to point sampling from a continuous universe. Statistics and probability letters, 18, pp. 353-362.Google Scholar

  • De Sanctis, M., Adeeb, A., Farcomeni, A., Patriarca, Ch., A., Saed, & Attorre, F. (2013). Classification and distribution patterns of plant communities on Socotra Island, Yemen. Applied vegetation science, 16(1), pp. 148-165.CrossrefWeb of ScienceGoogle Scholar

  • Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. (2013). Regression. Springer.Google Scholar

  • Godambe, V.P. (1955). An unified theory of sampling from finite populations. Journal of the Royal Statistical Society, series b, 17, pp. 269-278.Google Scholar

  • Gregoire, T. G., & Valentine, H. T. (2008). Sampling strategies for natural resources and the environment. Chapman and Hall/CRC.Google Scholar

  • Haber, S. (1966). A modified Monte Carlo quadrature. Math. comput., 20, pp. 361-368.Google Scholar

  • Haber, S. (1967). A modified Monte Carlo quadrature 2. Math. comput., 21, pp. 388-397.Google Scholar

  • Habrová, H. (2004). Geobiocoenological differentiation as a tool for sustainable land-use of Socotra Island. Ekologia, 23, pp. 47-57.Google Scholar

  • Habrová, H., & Maděra, P. (2004). Ecology of Dracaena cinnabari communities on Socotra. In: Polehla, P. (ed): Geobiocoenological papers, (pp. 120-126), vol. 9. MUAF in Brno.Google Scholar

  • Habrová, H., Čermák, Z., & Pavliš, J. (2009). Dragon’s blood tree - threatened by overmaturity, not by extinction: Dynamics of a Dracaena cinnabari woodland in the mountains of Socotra. Biological conservation, 142(4), pp. 772-778.Web of ScienceGoogle Scholar

  • Heikkinen, J. (eds. Kangas A. & Maltamo M.). (2006). Forest inventory, methodology and applications. Springer Verlag. Chap. Assessment of Uncertainty in Spatially Systematic Sampling, pp. 155-176.Google Scholar

  • Hubálková, I. (2011). Prediction of dragon’s blood tree (Dracaena cinnabari Balf.) stand sample density on Socotra Island (key study). Journal of Landscape Ecology, 4(2), pp. 5-20.Google Scholar

  • Kangas, A., Gove, J. H., & Scott, T. Ch. (eds. Kangas A. & Maltamo M.). (2006). Forest inventory, methodology and applications. Springer Verlag. Chap. Introduction, pp. 3-8.Google Scholar

  • Král, K., & Pavliš, J. (2006). The first detailed land cover map of Socotra Island by Landsat/ETM+ data. International Journal of Remote Sensing, 27(15), pp. 3239-3250.CrossrefGoogle Scholar

  • Kürschner, H., Hein, P., Kilian, N., & Hubaishan, M.A. (2006). Diversity and Zonation of the forests and woodlands of the Mountains of Northern Socotra, Yemen. Englera, 28, pp. 11-55.CrossrefGoogle Scholar

  • Laplace, P.S. (1783). Sur les naissances, les mariages et les morts. In: Histoire de l’académie royale des sciences, année 1783. Académie Royale des Sciences, Paris. Mandallaz, D. (1991). An unified approach to sampling theory for forest inventory based on infinite population and superpopulation models. Ph.D. thesis, Swiss-Federal Institute of Technology (ETH), Zurich.Google Scholar

  • Mandallaz, D. (2007). Sampling techniques for forest inventories. Chapman and Hall/CRC.Google Scholar

  • Marrero, A., Almeida, S.R., & Martín-González, M. (1998). A new species of the wild dragon tree, Dracaena (Dracaenaceae) from Gran Canaria and its taxonomic and biogeographic implications. Botanical Journal of the Linnean Society, 128(3), pp. 291-314.Google Scholar

  • Matérn, B. (1960). Spatial variation. Ph.D. thesis, Statens Skogsforskningsinstitute.Google Scholar

  • Mies, B., & Beyhl, F.E. (1996). The vegetation Ecology of Soqotra. In: Dumont, H.J. (ed): Proceedings of the first International Symposium on Soqotra Island, (pp. 35-82). Aden, NY. United Nations Publications.Google Scholar

  • Miller, A., & Cope, T.A. (1996). Flora of the Arabian Peninsula and Socotra. Vol. 1., Edinburgh University Press.Google Scholar

  • Miller, A., & Morris, M. (eds). (2000). Conservation and sustainable use of the biodiversity of soqotra archipelago. Royal Botanic Garden Edinburgh.Google Scholar

  • Miller, A.G., Morris, M., Diccon, A., & Atkinson, R. (2004). Ethnoflora of the Soqotra Archipelago. Royal Botanic Garden Edinburgh.Google Scholar

  • Neyman, J. (1934). On the two different aspects of the representative sampling: the method of stratified sampling and the method of purposive sampling. Journal of the Royal Statistical Socienty, pp. 558-606.Google Scholar

  • Quenouille, M. H. (1949). Problems in plane sampling. Annals of Mathematical Statistic, 20, pp. 335-375.Google Scholar

  • R Core Team. (2013). R: A language and environment for statistical computing.Google Scholar

  • R Foundation for Statistical Computing, Vienna, Austria.Web of ScienceGoogle Scholar

  • Rao, J. N. K. (2003). Small area estimation. Wiley.Google Scholar

  • Razdorskij, F., V. (1954). Anatomie rostlin. ČSAV. Praha.Google Scholar

  • Ripley, B. D. (2004). Spatial statistics. John Willey & Sons.Google Scholar

  • Scholte, P., & De Geest, P. (2010). The Climate of Socotra Island (Yemen): A first-time assessment of the timing of the monsoon wind reversal and its influence on precipitation and vegetation patterns. Journal of Arid Environments, 74, pp. 1507-1515.Web of ScienceCrossrefGoogle Scholar

  • Scholte, P., Al-Okaishi, A., & Suleyman, A.S. (2011). When conservation precedes development: A case study of the opening up of the Socotra Archipelago, Yemen. Oryx, 45(3), pp. 401-410.Web of ScienceCrossrefGoogle Scholar

  • Stevens, D. L. Jr. (1997). Variable density grid-based sampling designs for continuous spatial populations. Environmetrics, 8, pp. 167-195.CrossrefGoogle Scholar

  • Stevens, D. L. Jr., & Olsen, A. R. (2003). Variance estimation for spatialy balanced samples of environmental resources. Environmetrics, 14, pp. 593-610.CrossrefGoogle Scholar

  • Stevens, D. L. Jr., & Olsen, A. R. (2004). Spatialy balanced sampling of natural resources. Journal of the American Statistical Association, 99, pp. 262-278.CrossrefGoogle Scholar

  • Särndal, C. E., Swensson, B., & Wretman, J. (2003). Model assisted survey sampling. Springer.Web of ScienceGoogle Scholar

  • Van Damme, K., & Banfield, L. (2011). Past and present human impacts on the biodiversity of Socotra Island (Yemen): implications for future conservation. biodiversity conservation in the Arabian Peninsula zoology in the Middle East, Heidlberg: Kasparek Verlag. Supplementum 3: pp. 31-88.Google Scholar

  • Zimmermann, M., H., & Tomlinson, P., B. (1969). The vascular system in the axis of Dracaena fragrans (Agavacea). Journal of the Arnold Arboretum, 50, pp. 370-383. Google Scholar

About the article

Received: 2014-03-07

Accepted: 2014-04-10

Published Online: 2014-08-15

Published in Print: 2013-12-01


Citation Information: Journal of Landscape Ecology, ISSN (Online) 1805-4196, DOI: https://doi.org/10.2478/jlecol-2014-0001.

Export Citation

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nadezhda Nadezhdina, Roman Plichta, Valeriy Nadezhdin, Roman Gebauer, Radek Jupa, Hana Habrova, and Petr Madera
Functional Plant Biology, 2015, Volume 42, Number 11, Page 1092

Comments (0)

Please log in or register to comment.
Log in