Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Landscape Ecology

The Journal of Czech National Chapter of the Association for Landscape Ecology (CZ-IALE)

3 Issues per year


CiteScore 2016: 0.24

SCImago Journal Rank (SJR) 2016: 0.179
Source Normalized Impact per Paper (SNIP) 2016: 0.280

Open Access
Online
ISSN
1805-4196
See all formats and pricing
More options …

Spatiotemporal Changes in Atmospheric Deposition Rates Across The Czech Republic Estimated in The Selected Biomonitoring Campaigns. Examples of Results Available For Landscape Ecology and Land Use Planning

Ivan Suchara
  • Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Květnové náměstí 391, CZ-252 43 Průhonice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julie Sucharová
  • Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Květnové náměstí 391, CZ-252 43 Průhonice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marie Holá
  • Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Květnové náměstí 391, CZ-252 43 Průhonice, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-26 | DOI: https://doi.org/10.1515/jlecol-2015-0002

Abstract

Several large-scale and fine-scale biomonitoring surveys were carried out in the Czech Republic to estimate current and long-term accumulated atmospheric deposition rates using moss, spruce bark and forest floor humus as bioindicators since the end of 1980s. The results of the bioindicator analyses significantly correlated with available figures of deposition rates detected at the EMEP or Czech national measurement stations.

The moss monitoring programmes revealed position of about 7 hot spots of high deposition loads of about 35-40 elements and indicated spatiotemporal decrease in the element deposition rates caused by restructuralization of industry, desulphurization of coal power plants and ceased distribution of leaded petrol. The deposition loads of toxic and risk elements have significantly decreased since the end of 1980s; however, increasing atmospheric deposition rates of reactive nitrogen has been bioindicated recently. The fine-scale moss monitoring campaigns, for example, delimited deposition zones around selected emission sources, revealed changes in deposition rates after introducing new technologies or delimited contaminated area in the surroundings of a chlor-alkali plant after a catastrophic flood episode. Deposition ranges of main pollution sources were mapped depicting the aerial distribution of stable lead isotopic ratios in moss, because the isotopic ratios are highly specific for each pollution source.

Monitoring the spruce bark parameters enabled to recognise the distribution of acid rain, dust and sulphate deposition rates and their spatiotemporal changes across the country between 1987 and 2010. The bark investigations along altitudinal profiles showed diminishing effect of air pollution on spruce bark parameters with increasing elevation. This phenomenon can be explained by a decreasing capacity of reduced tree crowns to trap air pollutants in the mountain environment.

The mapping of element content in forest floor humus revealed position of long-term spots of high accumulation of industrial pollutants and Chernobyl-derived 137Cs in forests. Knowledge of these hot spots is important for health and environmental protection mainly in the areas where most of the former emission sources were cancelled and the current low atmospheric deposition rates may make a false impression of the clean landscape.

The data of the Czech national moss biomonitoring surveys were accepted and stored in the database of UN ECE ICP-Vegetation for checking of air pollution and its possible effects on vegetation in Europe.

Keywords: Atmospheric deposition; Biomonitoring; Moss; Bark; Humus; Czech Republic

References

  • Bellis, D., Ma, R., Bramall, N., McLeod, C.W., Chapman, N. & Satake K. (2001). Airborne uranium contamination - as revealed through elemental and isotopic analysis of tree bark. Environmental Pollution, 114(3), 383-387.CrossrefGoogle Scholar

  • Berg, T. & Steinnes, E. (1997). The use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition from: From relative to absolute deposition values. Environmental Pollution, 98(1), 61-71.CrossrefGoogle Scholar

  • Cykloatlas on-line - cykloserver, (2014). Retrieved December, 2014 from web: http://www.cykloserver.cz/cykloatlas/#pos=49.75000P15.75000P7.Google Scholar

  • ČHMÚ (2012). Material presented at an exhibition of the Czech Hydrometeorological Institute in Prague, April/May, 2012. (Košetice Observatory. In Czech). Retrieved December, 2014 from web: <http://portal.chmi.cz/files/portal/docs/ruzne/vystava/>CISTOTA/12.pdf.Google Scholar

  • ČHMÚ (2013). Fig. III.23. The development of annual wet deposition at selected stations in 1991-2012, Czech Republic. In: Air pollution in the Czech Republic in 2012. Czech Hydrometeorological Institute, Prague. Retrieved December, 2014 from web: http://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/groce/gr12e/png/f3-23.png.Google Scholar

  • EU DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 May 2008 on ambien air quality and cleaner air for Europe (2008). Official Journal of the European Union, 11. 6. 2008, L 162/1-162/44.Google Scholar

  • Frontasyeva, M., Harmens, H. & Participants (2014). Heavy metals, nitrogen and POPs in European mosses: 2015 survey. Monitoring manual. UNECE ICP Vegetation. 26 pp. Retrieved July 17, 2014 from web: http://icpvegetation.ceh.ac.uk/publications/documents/MossmonitoringMANUAL-2015-17.07.14.pdf.Google Scholar

  • Goldschmidt, V.M. (1937). The principles of distribution of chemical elements in minerals and rocks. Journal of the Chemical Society, 1937, 655-673.Google Scholar

  • Grodzińska, K. (1971). Acidification of tree bark as a measure of air pollution in Southern Poland. Bulletin de l’Academie Polonnaise des Sciences, Class 2 Série des Biologiques, 19(3), 189-192.Google Scholar

  • Grodzińska, K. (1979). Tree bark - sensitive biotest for environmental acidification. Environment International, 2(3), 173-176.CrossrefGoogle Scholar

  • Harmens, H., Ilyin, I., Mills, G., Aboal J.R., Alber, R., Blum, O., Coşkun, M., De Temmerman, L., Fernández, J.Á., Figueira, R., Frontasyeva, M., Godzik, B., Goltsova, N., Jeran, Z., Korzekwa, S., Kubin, E., Kvietkus, K., Leblond, S., Liiv, S., Magnússon, S.H., Maňkovská, B., Nikodemus, O., Pesch, R., Pikolainen, J., Radnović, D., Rühling, Å., Santamaria, J.M., Schröder, W., Spiric, Z., Stafilov, T., Steinnes, E., Suchara, I., Tabors, G., Thöni, L., Turcsányi, G., Yurukova, L. & Zechmeister, H.G. (2012). Country-specific correlations across Europe between modelled atmospheric cadmium and lead deposition and concentrations in mosses. Environmental Pollution, 166, 1-9.Google Scholar

  • Härtel, O. & Grill, D. (1972). Die Leitfähigkeit von Fichtenborken- Extraktionen als emfindlicher Indikator für Luftverunreinigungen. European Journal of Forest Pathology, 2(4), 205-215.CrossrefGoogle Scholar

  • Helliwell, R.C., Wright, R.F., Jackson-Blake, L.A., Ferrier, R.C., Aherne, J., Cosby, B.J., Evans, CH.D., Forsius, M., Hruska, J., Jenkins, A., Kram, P., Kopáček, J., Mayer, V., Moldan, F., Posch, M., Potts, J.M., Rogora, M. & Schöpp, V. (2014). Assessing recovery from acidification of European surface waters in the year 2010: Evaluation of projections made with the MAGIC model in 1995. Environmental Science and Technology, 48, 13280-13288.Google Scholar

  • Hruška, J. & Ciencala, E. (2003). Long-term acidification and nutrient degradation of forest soils - limiting factors of forestry today. Prague: Ministry for the Environment, 165 pp.Google Scholar

  • Ilyin, I., Travnikov, O., Varygina, M., Vana, M., Machalek, T. & Hnilikova, H. (2012). Assessment of heavy metal pollution levels in the Czech Republic (EMEP case study). Joint MSC-E/CHMI Report. EMEP/ASC-E Technical Report 1/2012,58 pp. Meteorological Synthesizing Centre - East, Moscow and Czech Hydrometeorological Institute, Prague. (http://www.msceast.org/reports/1_2012.pdf) Google Scholar

  • Knoth, W., Mann, W., Meyer, R. & Nebhuth, J. (2006). Humus from coniferous forests a reservoir for PBDE from air and deposition - analysis and quality control. Organohalogen Compounds, 68, 1163-1166.Google Scholar

  • Kosmus, W. & Grill, D. (1986). Die Bedeutung verschiedener Parameter bei der Beurteilung von Immissionen anhand von Borkenanalysen am Beispiel des Stadtgebietes von Graz. Mitteilungen des Naturwissenschaftlichen Vereins für Steiermark, 116, 161-172.Google Scholar

  • Kuik, P. & Wolterbeek H.Th. (1994). Factor analysis of trace-element data from tree-bark samples in The Netherlands. Environmental Monitoring and Assessment, 32(3), 207-226.Google Scholar

  • Låg, J & Steinnes, E. 1978. Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils. Geoderma, 20(1), 3-14.Google Scholar

  • Markert, B., Herpin, U., Berlekamp, J., Oehlmann, J., Grodzinska, K., Mankovska, B., Suchara, I., Siewers, U., Weckert, V. & Lieth, H. 1996. A comparison of heavy metal deposition in selected Eastern European countries using the moss monitoring method, with special emphasis on the ′Black Triangle ′. Science of the Total Environment, 193(2), 85-100).CrossrefGoogle Scholar

  • Markert, B.A., Breure A.M. & Zechmeister H.G. (2004). Bioindicators and biomonitors. Principles, concepts and applications. 2nd impression, 997 pp. Amsterdam - Tokyo: Elsevier.Google Scholar

  • Matysek, D., Raclavska, H. & Raclavsky, K. (2008). Correlation between magnetic susceptibility and heavy metal concentrations on forest soils of the eastern Czech Republic. Journal of Environment and Engineering Geophysics, 19(1), 13-26.Web of ScienceGoogle Scholar

  • Novák, M., Kirchner, J.W, Fottová, D., Přechová, E., Jačková, I., Krám, P. & Hruška. J. (2005). Isotopic evidence for processes of sulphur retention/release in 13 forested catchments spanning a strong pollution gradient (Czech Republic, central Europe). Global Biogeochemical Cycles, 19, GB4012, 14 pp. (Doi: 10.1029/2004GB002396).CrossrefGoogle Scholar

  • Pilátová, H., Suchara, I., Rulík, P., Sucharová, J., Helebrant, J., & Holá, M. (2011). Maps of distribution of 137Cs content in forest floor humus in coniferous forests within the Czech Republic in 1995. (In Czech). Zpráva SÚRO č. 25/2011, 8 pp. Report. Prague: National Radiation Protection Institute. (https://www.suro.cz/cz/rms/monitorovani-slozek-zivotniho-prostredi/mapy-obsahu-cs137-v-humusu-v-1995).Google Scholar

  • Reimann, C., Arnoldussen, A., Engelmaier, P., Filzmoser, P., Finne, T.E., Garrett, R.G., Keller, F. & Nordgulen, Æ. (2007). Element concentrations and variations along a 120-km long transect in southern Norway - Anthropogenic vs. geogenic vs. biogenic element sources and cycles. Applied Geochemistry, 22(4), 851-871.Web of ScienceGoogle Scholar

  • Reimann, C., Engelmaier, P., Flem, B., Gough, L., Lamothe, P., Nordgulen, Æ. & Smith, D. (2009). Geochemical gradients in soil O-horizon samples from southern Norway: Natural or anthropogenic? Applied Geochemistry, 24(1), 62-76.CrossrefWeb of ScienceGoogle Scholar

  • Ross, H.B. (1990). On the use of mosses (Hylocomium splendens and Pleurozium schreberi) for estimating atmospheric trace metal deposition. Water, Air, and Soil Pollution, 50(1-2), 63-76.CrossrefGoogle Scholar

  • Rühling, Å. & Tyler, G. (1970). Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.) Br. et Sch. Oikos, 21(1), 92-97.CrossrefGoogle Scholar

  • Schröder, W., Pesch, R., Harmens, H., Fagerli, H. & Ilyin, I. (2012). Does spatial auto-correlation call for a revision of latest heavy metal and nitrogen deposition maps? Environmental Sciences Europe, 24, 20, 8 pp., (DOI: 10.1186/2190-4715-24-20).CrossrefGoogle Scholar

  • Schulz, H., Popp, P., Huhn, G., Stärk, H.J. & Schüürmann, G. (1999). Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks: I. Temporal and spatial variations. Science of the Total Environment, 232(1-2), 49-58.Google Scholar

  • Stevenson, E.J. (1994). Humus chemistry. Genesis, composition, reactions. 2nd Ed., 512 pp. Chichester: John Wiley & Sons.Google Scholar

  • Suchara, I. (1992). Experience in air quality indication through leaf enzyme activities and bark extracts characteristics. In: Boháč, J. (ed.), Bioindicatores deteriorisationis regionis. Proceedings of the sixth international conference, (pp. 109-116), České Budějovice: Institute of Landscape Ecology.Google Scholar

  • Suchara, I. (1993). The use of some urban park woody species in an estimation of air pollution levels. Tree bark extract characteristics. Zahradnictví, Praha, 20(4), 241-260.Google Scholar

  • Suchara, I. (2012). Temporal and spatial changes in spruce bark acidity at the scale of the Czech Republic in the last two decades, and the current abundance of epiphytic lichen Hypogymnia physodes. Water, Air, and Soil Pollution, 223(4), 1685-1697.Web of ScienceGoogle Scholar

  • Suchara, I. & Sucharová, J. (2000). Distribution of long-term accumulated atmospheric deposition loads of metal and sulphur compounds in the Czech Republic determined through forest floor humus analyses. Acta Průhoniciana, 69, 1-177.Google Scholar

  • Suchara, I. & Sucharová, J. (2002). Distribution of sulphur and heavy metals in forest floor humus of the Czech Republic. Water, Air, and Soil Pollution, 136(1-4), 289-316.Google Scholar

  • Suchara, I. & Sucharová, J. (2008). Mercury distribution round the Spolana chlor-alkali plant (central Bohemia, Czech Republic) after a catastrophic flood, as revealed by bioindicators. Environmental Pollution, 151(2), 352-361.Web of ScienceGoogle Scholar

  • Suchara, I. & Sucharová, J. (2008). Distribution of 36 element deposition rates in a historic mining and smelting area as determined through fine scale biomonitoring techniques, Part II: Relative long-term accumulated atmospheric deposition levels. Water, Air, and Soil Pollution, 153(1-4), 229-252.Google Scholar

  • Suchara, I., Sucharová, J. & Holá, M. (2014). The influence of contrasting ambient SO2 concentrations in the Czech Republic in 1995 and 2010 on the characteristics of spruce bark, used as an air quality indicator. Ecological Indicators, 39: 144-152.CrossrefWeb of ScienceGoogle Scholar

  • Suchara, I., Rulík, P., Hůlka, J. & Pilátová, H. (2011). Retrospective determination of 137Cs specific activity distribution in spruce bark and bark aggregated transfer factor in forests on the scale of the Czech Republic ten years after the Chernobyl accident. Science of the Total Environment, 409(10), 1927-1934.Web of ScienceGoogle Scholar

  • Suchara, I., Sucharová, J. & Holá, M. (2014). The influence of contrasting ambient SO2 concentrations in the Czech Republic in 1995 and in 2000 on the characteristics of spruce bark, used as an air quality indicator. Ecological Indicators, 39, 144-152.CrossrefWeb of ScienceGoogle Scholar

  • Sucharova, J. & Suchara I. (2004). Distribution of 36 element deposition rates in s historic mining and smelting area as documented through fine-scale biomonitoring techniques. Part I: Relative and absolute current atmospheric deposition levels detected by moss analyses. Water, Air, and Soil Pollution, 153(1-4), 205-228.Google Scholar

  • Sucharova, J. & Suchara I. (2006). Determination of 36 elements in plant reference materials with different Si contents by inductively coupled plasma mass spectrometry. Comparison of microwave digestions assisted by three types of digestion mixtures. Analytica Chimica Acta, 576(2), 163-176.Google Scholar

  • Sucharová, J., Suchara, I., Reimann, C., Boyd, R., Filzmoser, P. & Englmaier, P. (2011). Spatial distribution of lead and lead isotopes in soil B-horizon, forest-floor humus, grass (Avenella flexuosa) and spruce (Picea abies) needles across the Czech Republic. Applied Geochemistry, 26(7), 1205-1214.CrossrefWeb of ScienceGoogle Scholar

  • Sucharová, J., Suchara, I., Hola, M., Marikova, S., Reimann, C., Boyd, R., Filzmoser, P. & Englmaier, P. (2012). Top-/bottom-soil ratios and enrichment factors: What do they really show? Applied Geochemistry, 27(1), 138-145.CrossrefWeb of ScienceGoogle Scholar

  • Sucharová, J., Suchara, I., Holá, M. & Reimann C. (2014). Contemporary lead concentrations and lead stable isotope distribution in forest moss across the Czech Republic. Applied Geochemistry, 40, 51-60.Web of ScienceCrossrefGoogle Scholar

  • Thöni, L. (1996). Vergleich von Elementkonzentrationen in drei Biominitoringmoosen untereinander und mit Depositionsfrachten im Bulksammler nach Bergerhoff, Egg: Bundesamtes für Umwelt, Wald und Landschaft - Forschungsstelle für Umwelbeobachtung (BUWAL-FUB), 89 pp.Google Scholar

  • Zhiyanski, M., Bech, J., Sokolovska, J., Lucot, E., Bech, J. & Badot, P. H. (2008). Cs-137 distribution in forest floor and surface soil layers from two mountains regions in Bulgaria. Journal of Geochemical Exploration, 96(2-3), 256-266.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-02-10

Accepted: 2015-05-05

Published Online: 2015-11-26

Published in Print: 2015-11-01


Citation Information: Journal of Landscape Ecology, ISSN (Online) 1805-4196, DOI: https://doi.org/10.1515/jlecol-2015-0002.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in