Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of the Mechanical Behavior of Materials

Editor-in-Chief: Aifantis, Elias C.

6 Issues per year

See all formats and pricing
More options …
Volume 24, Issue 1-2 (May 2015)


Eight-chain and full-network models and their modified versions for rubber hyperelasticity: a comparative study

Mokarram Hossain / A.F.M.S. Amin
  • Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Muhammad Nomani Kabir
  • Faculty of Computer Systems and Software Engineering, University Malaysia Pahang, Pahang, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-07 | DOI: https://doi.org/10.1515/jmbm-2015-0002


The eight-chain model, also known as Arruda-Boyce model, is widely used to capture the rate-independent hyperelastic response of rubber-like materials. The parameters of this model are physically based and explained from micromechanics of chain molecules. Despite its excellent performance with only two material parameters to capture bench measurements in uniaxial and pure shear regime, the model is known to be significantly deficient in predicting the equibiaxial data. To ameliorate such drawback, over the years, several modified versions of this successful model have been proposed in the literature. The so-called full-network model is another micromechanically motivated chain model, which has also few modified versions in the literature. For this study, two modified versions of the full-network model have been selected. In this contribution, five modified versions of the Arruda-Boyce model and two modified versions of full-network model are critically compared with the classical eight-chain model for their adequacy in representing equibiaxial data. To do a comparison of all selected models in reproducing the well-known Treloar data, the analytical expressions for the three homogeneous deformation modes, that is, uniaxial tension, equibiaxial tension, and pure shear have been derived and the performances of the selected models are analysed. The comparative study demonstrates that modified Flory-Erman model, Gornet-Desmorat (GD) model, Meissner-Matějka model, and bootstrapped eight-chain model predict well the three deformation modes compare to the classical eight-chain model.

Keywords: eight-chain model; full-network model; micromechanical model; phenomenological model; rubber-like material


  • [1]

    Amin AFMS. Constitutive Modeling of Strain-Rate Dependency of Natural and High Damping Rubbers. PhD Dissertation, Saitama University: Japan, 2001.Google Scholar

  • [2]

    Amin AFMS, Wiraguna SI, Bhuiyan AR, Okui Y. J. Eng. Mech. ASCE 2006, 132, 54–64.Google Scholar

  • [3]

    Amin AFMS, Lion A, Sekita S, Okui Y. Int. J. Plasticity 2006, 22, 1610–1657.Google Scholar

  • [4]

    Milani G, Milani F. J. Eng. Mech. ASCE 2012, 138, 416–428.Google Scholar

  • [5]

    Sahu RK, Patra K. Adv. Mater. Res. 2013, 685, 331–335.Google Scholar

  • [6]

    Kroon M. J. Elasticity 2011, 102, 99–116.Google Scholar

  • [7]

    Hossain M, Vu D K, Steinmann P. Comp. Mater. Sci. 2012, 59, 65–74.Google Scholar

  • [8]

    Boyce MC, Arruda EM. Rubber Chem. Technol. 2000, 73, 504–523.Google Scholar

  • [9]

    Hossain M, Steinmann P. J. Mech. Behav. Mater. 2013, 22, 27–50.Google Scholar

  • [10]

    Arruda EM, Boyce MC. J. Mech. Phys. Solids 1993, 41, 389–412.Google Scholar

  • [11]

    Miehe C, Göktepe S, Lulei F. J. Mech. Phys. Solids 2004, 52, 2617–2660.Google Scholar

  • [12]

    Steinmann P, Hossain M, Possart G. Arch. Appl. Mech. 2012, 82, 1183–1217.Google Scholar

  • [13]

    Marckmann G, Verron E. Rubber Chem. Technol. 2006, 79, 835–858.Google Scholar

  • [14]

    Kaliske M, Rothert H. Eng. Computations 1997, 14, 216–232.Google Scholar

  • [15]

    Shariff MHBM. Rubber Chem. Technol. 2000, 73, 1–18.Google Scholar

  • [16]

    Ogden RW. P. Roy. Soc. Lond. A Mat. 1972, 326, 565–584.Google Scholar

  • [17]

    Ogden RW, Saccomandi G, Sgura I. Comput. Mech. 2004, 34, 484–502.Google Scholar

  • [18]

    Miroshnychenko D, Green WA. Int. J. Solids Structures 2009, 46, 271–286.Google Scholar

  • [19]

    Jerrams S, Murphy N, Eds. Constitutive Models for Rubber VII: Proceedings of the 7th European Conference on Constitutive Models For Rubber, Dublin, Ireland. CRC Press (Taylor & Francis Group, Leiden, The Netherlands), 2012, 265–271.Google Scholar

  • [20]

    Bechir H, Chevalier L, Idjeri M. Int. J. Eng. Sci. 2010, 48, 265–274.Google Scholar

  • [21]

    Flory PJ, Erman B. Macromolecules 1980, 15, 800–806.Google Scholar

  • [22]

    Meissner B, Matejka L. Polymer 2003, 44, 4599–4510.Google Scholar

  • [23]

    Wu PD, van der Giessen E. Mech. Res. Commun. 1992, 19, 427–433.CrossrefGoogle Scholar

  • [24]

    Elias-Zuniga A. Polymer 2006, 47, 907–914.Google Scholar

  • [25]

    Itskov M, Ehret AE, Dargazany R. Math. Mech. Solids 2010, 15, 655–671.Google Scholar

  • [26]

    Treloar LRG. Trans. Faraday Soc. 1944, 40, 59–70.Google Scholar

  • [27]

    Morini B, Porcelli M. Comput. Optim. Appl. 2012, 51, 27–49.Google Scholar

  • [28]

    Chagnon G, Marckmann G, Verron E. Rubber Chem. Technol. 2004, 77, 724–735.Google Scholar

  • [29]

    Miroshnychenko D, Green WA, Turner DM. J. Mech. Phys. Solids 2005, 3, 748–770.Google Scholar

  • [30]

    Pucci E, Saccomandi G. Rubber Chem. Technol. 2002, 75, 839–851.Google Scholar

  • [31]

    Hart-Smith LJ. Z. Angew. Math. Phys. 1966, 17, 608–626.Google Scholar

  • [32]

    Meissner B, Matejka L. Polymer 2004, 45, 7247–7260.Google Scholar

  • [33]

    Kaliske M, Heinrich G. Rubber Chem. Technol. 1999, 72, 602–632.Google Scholar

  • [34]

    Treloar LRG, Riding G. Proc. R. Soc. Lond. 1979, A369, 261.Google Scholar

  • [35]

    Beatty MF. J. Elasticity 2003, 70, 65–86.Google Scholar

  • [36]

    Elias-Zuniga A, Beatty MF. I. J. Eng. Sci. 2000, 40, 2265–2294.Google Scholar

  • [37]

    Jernigan RL, Flory PJ. J. Chem. Phys. 1969, 50, 4185–4201.Google Scholar

About the article

Corresponding author: Mokarram Hossain, Chair of Applied Mechanics, University of Erlangen-Nuremberg, Germany, Tel.:+49-9131-8564410, Fax: +49-9131-8528503, e-mail:

Published Online: 2015-05-07

Published in Print: 2015-05-01

Citation Information: Journal of the Mechanical Behavior of Materials, ISSN (Online) 2191-0243, ISSN (Print) 0334-8938, DOI: https://doi.org/10.1515/jmbm-2015-0002.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Radosław Jedynak
Journal of Non-Newtonian Fluid Mechanics, 2017
Markus Mehnert, Mokarram Hossain, and Paul Steinmann
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2016, Volume 472, Number 2190, Page 20160170

Comments (0)

Please log in or register to comment.
Log in