Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Mathematical Cryptology

Managing Editor: Magliveras, Spyros S. / Steinwandt, Rainer / Trung, Tran

Editorial Board: Blackburn, Simon R. / Blundo, Carlo / Burmester, Mike / Cramer, Ronald / Dawson, Ed / Gilman, Robert / Gonzalez Vasco, Maria Isabel / Grosek, Otokar / Helleseth, Tor / Kim, Kwangjo / Koblitz, Neal / Kurosawa, Kaoru / Lauter, Kristin / Lange, Tanja / Menezes, Alfred / Nguyen, Phong Q. / Pieprzyk, Josef / Rötteler, Martin / Safavi-Naini, Rei / Shparlinski, Igor E. / Stinson, Doug / Takagi, Tsuyoshi / Williams, Hugh C. / Yung, Moti


CiteScore 2017: 1.43

SCImago Journal Rank (SJR) 2017: 0.293
Source Normalized Impact per Paper (SNIP) 2017: 1.117

Mathematical Citation Quotient (MCQ) 2017: 0.51

Online
ISSN
1862-2984
See all formats and pricing
More options …
Volume 3, Issue 1

Issues

Distortion maps for supersingular genus two curves

Steven D. Galbraith
  • Mathematics Department, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom. Email:
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jordi Pujolàs / Christophe Ritzenthaler
  • Institut de Mathématiques de Luminy, UMR 6206 du CNRS, Luminy, Case 907, 13288 Marseille, France. Email:
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benjamin Smith
  • INRIA Saclay–Île-de-France, Laboratoire d'Informatique (LIX), École polytechnique, 91128 Palaiseau, France. Email:
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-06-10 | DOI: https://doi.org/10.1515/JMC.2009.001

Abstract

Distortion maps are a useful tool for pairing based cryptography. Compared with elliptic curves, the case of hyperelliptic curves of genus g > 1 is more complicated, since the full torsion subgroup has rank 2g. In this paper, we prove that distortion maps always exist for supersingular curves of genus g > 1. We also give several examples of curves of genus 2 with explicit distortion maps for embedding degrees 4, 5, 6, and 12.

Keywords.: Hyperelliptic curve cryptography; pairings; supersingular curves; distortion maps

About the article

Received: 2006-11-30

Revised: 2009-01-08

Published Online: 2009-06-10

Published in Print: 2009-05-01


Citation Information: Journal of Mathematical Cryptology, Volume 3, Issue 1, Pages 1–18, ISSN (Online) 1862-2984, ISSN (Print) 1862-2976, DOI: https://doi.org/10.1515/JMC.2009.001.

Export Citation

© de Gruyter 2009.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Rafael A. Arce-Nazario, Francis N. Castro, Oscar E. González, Luis A. Medina, and Ivelisse M. Rubio
Designs, Codes and Cryptography, 2017
[2]
Huseyin Hisil and Craig Costello
Journal of Cryptology, 2017, Volume 30, Number 2, Page 572
[3]
Alice Silverberg and Yuri G. Zarhin
Designs, Codes and Cryptography, 2015, Volume 77, Number 2-3, Page 427
[4]
Francis N. Castro, Oscar E. González, and Luis A. Medina
Cryptography and Communications, 2015, Volume 7, Number 4, Page 379

Comments (0)

Please log in or register to comment.
Log in