Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Mathematical Cryptology

Managing Editor: Magliveras, Spyros S. / Steinwandt, Rainer / Trung, Tran

Editorial Board: Blackburn, Simon R. / Blundo, Carlo / Burmester, Mike / Cramer, Ronald / Dawson, Ed / Gilman, Robert / Gonzalez Vasco, Maria Isabel / Grosek, Otokar / Helleseth, Tor / Kim, Kwangjo / Koblitz, Neal / Kurosawa, Kaoru / Lauter, Kristin / Lange, Tanja / Menezes, Alfred / Nguyen, Phong Q. / Pieprzyk, Josef / Rötteler, Martin / Safavi-Naini, Rei / Shparlinski, Igor E. / Stinson, Doug / Takagi, Tsuyoshi / Williams, Hugh C. / Yung, Moti


CiteScore 2017: 1.43

SCImago Journal Rank (SJR) 2017: 0.293
Source Normalized Impact per Paper (SNIP) 2017: 1.117

Mathematical Citation Quotient (MCQ) 2017: 0.51

Online
ISSN
1862-2984
See all formats and pricing
More options …
Volume 12, Issue 4

Issues

DAGS: Key encapsulation using dyadic GS codes

Gustavo Banegas / Paulo S. L. M. Barreto / Brice Odilon Boidje
  • Laboratoire d’Algebre, de Cryptographie, de Géométrie Algébrique et Applications, Université Cheikh Anta Diop, Dakar, Senegal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pierre-Louis Cayrel / Gilbert Ndollane Dione
  • Laboratoire d’Algebre, de Cryptographie, de Géométrie Algébrique et Applications, Université Cheikh Anta Diop, Dakar, Senegal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kris Gaj / Cheikh Thiécoumba Gueye
  • Laboratoire d’Algebre, de Cryptographie, de Géométrie Algébrique et Applications, Université Cheikh Anta Diop, Dakar, Senegal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Richard Haeussler / Jean Belo Klamti
  • Laboratoire d’Algebre, de Cryptographie, de Géométrie Algébrique et Applications, Université Cheikh Anta Diop, Dakar, Senegal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ousmane N’diaye
  • Laboratoire d’Algebre, de Cryptographie, de Géométrie Algébrique et Applications, Université Cheikh Anta Diop, Dakar, Senegal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Duc Tri Nguyen / Edoardo Persichetti / Jefferson E. Ricardini
Published Online: 2018-09-20 | DOI: https://doi.org/10.1515/jmc-2018-0027

Abstract

Code-based cryptography is one of the main areas of interest for NIST’s Post-Quantum Cryptography Standardization call. In this paper, we introduce DAGS, a Key Encapsulation Mechanism (KEM) based on quasi-dyadic generalized Srivastava codes. The scheme is proved to be IND-CCA secure in both random oracle model and quantum random oracle model. We believe that DAGS will offer competitive performance, especially when compared with other existing code-based schemes, and represent a valid candidate for post-quantum standardization.

Keywords: Post-quantum cryptography; code-based cryptography; key exchange

MSC 2010: 94B05; 11T71; 14G50; 94A60

References

  • [1]

    A. Al Jabri, A statistical decoding algorithm for general linear block codes, Cryptography and Coding, Lecture Notes in Comput. Sci. 2260, Springer, Berlin (2001), 1–8. Google Scholar

  • [2]

    E. Alkim, L. Ducas, T. Pöppelmann and P. Schwabe, Post-quantum key exchange - a new hope, Cryptology ePrint Archive Report 2015/1092 (2015), http://eprint.iacr.org/2015/1092.

  • [3]

    M. Baldi, F. Chiaraluce, R. Garello and F. Mininni, Quasi-cyclic low-density parity-check codes in the McEliece cryptosystem, IEEE International Conference on Communications—ICC’07, IEEE Press, Piscataway (2007), 951–956. Google Scholar

  • [4]

    E. Barelli and A. Couvreur, An efficient structural attack on nist submission dags, preprint (2018), https://arxiv.org/abs/1805.05429.

  • [5]

    S. Barg, Some new NP-complete coding problems (in Russian), Problemy Peredachi Informatsii 30 (1994), no. 3, 23–28. Google Scholar

  • [6]

    A. Barg, Complexity issues in coding theory, Handbook of Coding Theory. Vol. 1. Part 1: Algebraic Coding, Elsevier, Amsterdam (1998), 649–754. Google Scholar

  • [7]

    P. S. L. M. Barreto, S. Gueron, T. Gueneysu, R. Misoczki, E. Persichetti, N. Sendrier and J.-P. Tillich, Cake: Code-based algorithm for key encapsulation, Cryptography and Coding—IMACC 2017, Springer, Cham (2017), 207–226. Google Scholar

  • [8]

    P. S. L. M. Barreto, R. Lindner and R. Misoczki, Monoidic codes in cryptography, Post-quantum Cryptography, Lecture Notes in Comput. Sci. 7071, Springer, Heidelberg (2011), 179–199. Google Scholar

  • [9]

    T. P. Berger, P.-L. Cayrel, P. Gaborit and A. Otmani, Reducing key length of the McEliece cryptosystem, Progress in Cryptology—AFRICACRYPT 2009, Lecture Notes in Comput. Sci. 5580, Springer, Berlin (2009), 77–97. Google Scholar

  • [10]

    E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg, On the inherent intractability of certain coding problems, IEEE Trans. Inform. Theory IT-24 (1978), no. 3, 384–386. Google Scholar

  • [11]

    D. J. Bernstein, Grover vs. McEliece, Post-Quantum Cryptography, Lecture Notes in Comput. Sci. 6061, Springer, Berlin (2010), 73–80. Google Scholar

  • [12]

    D. J. Bernstein, T. Chou and P. Schwabe, Mcbits: Fast constant-time code-based cryptography, Cryptographic Hardware and Embedded Systems—CHES 2013, Lecture Notes in Comput. Sci. 8086, Springer, Berlin (2013), 250–272. Google Scholar

  • [13]

    B. Biswas and N. Sendrier, McEliece cryptosystem implementation: Theory and practice, Post-quantum Cryptography, Lecture Notes in Comput. Sci. 5299, Springer, Berlin (2008), 47–62. Google Scholar

  • [14]

    J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan and D. Stebila, Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE, Cryptology ePrint Archive Report 2016/659 (2016), http://eprint.iacr.org/2016/659.

  • [15]

    J. W. Bos, C. Costello, M. Naehrig and D. Stebila, Post-quantum key exchange for the tls protocol from the ring learning with errors problem, IEEE Symposium on Security and Privacy, IEEE Press, Piscataway (2015), 553–570. Google Scholar

  • [16]

    P.-L. Cayrel, G. Hoffmann and E. Persichetti, Efficient implementation of a CCA2-secure variant of McEliece using generalized Srivastava codes, Public Key Cryptography—PKC 2012, Lecture Notes in Comput. Sci. 7293, Springer, Heidelberg (2012), 138–155. Google Scholar

  • [17]

    N. T. Courtois, M. Finiasz and N. Sendrier, How to achieve a McEliece-based digital signature scheme, Advances in Cryptology—ASIACRYPT 2001, Lecture Notes in Comput. Sci. 2248, Springer, Berlin (2001), 157–174. Google Scholar

  • [18]

    R. Cramer and V. Shoup, Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack, SIAM J. Comput. 33 (2003), no. 1, 167–226. CrossrefGoogle Scholar

  • [19]

    J.-C. Deneuville, P. Gaborit and G. Zémor, Ouroboros: A simple, secure and efficient key exchange protocol based on coding theory, Post-quantum Cryptography, Lecture Notes in Comput. Sci. 10346, Springer, Cham (2017), 18–34. Google Scholar

  • [20]

    J.-C. Faugère, V. Gauthier-Umaña, A. Otmani, L. Perret and J.-P. Tillich, A distinguisher for high-rate McEliece cryptosystems, IEEE Trans. Inform. Theory 59 (2013), no. 10, 6830–6844. Web of ScienceCrossrefGoogle Scholar

  • [21]

    J.-C. Faugère, A. Otmani, L. Perret, F. de Portzamparc and J.-P. Tillich, Structural cryptanalysis of McEliece schemes with compact keys, Des. Codes Cryptogr. 79 (2016), no. 1, 87–112. CrossrefGoogle Scholar

  • [22]

    J.-C. Faugère, A. Otmani, L. Perret and J.-P. Tillich, Algebraic cryptanalysis of McEliece variants with compact keys, Advances in Cryptology—EUROCRYPT 2010, Lecture Notes in Comput. Sci. 6110, Springer, Berlin (2010), 279–298. Google Scholar

  • [23]

    J.-C. Faugère, A. Otmani, L. Perret and J.-P. Tillich, Algebraic cryptanalysis of McEliece variants with compact keys – towards a complexity analysis, Proceedings of the 2nd International Conference on Symbolic Computation and Cryptography—SCC’10, Laboratoire d’Informatique de Paris 6, Paris (2010), 45–55. Google Scholar

  • [24]

    E. Fujisaki and T. Okamoto, Secure integration of asymmetric and symmetric encryption schemes, J. Cryptology 26 (2013), no. 1, 80–101. CrossrefWeb of ScienceGoogle Scholar

  • [25]

    Q. Guo, T. Johansson and P. Stankovski, A key recovery attack on MDPC with CCA security using decoding errors, Advances in Cryptology—ASIACRYPT 2016. Part I, Lecture Notes in Comput. Sci. 10031, Springer, Berlin (2016), 789–815. Google Scholar

  • [26]

    Y. Hamdaoui and N. Sendrier, A non asymptotic analysis of information set decoding, Cryptology ePrint Archive Report 2013/162 (2013), http://eprint.iacr.org/2013/162.

  • [27]

    D. Hofheinz, K. Hövelmanns and E. Kiltz, A modular analysis of the Fujisaki–Okamoto transformation, Theory of Cryptography. Part I, Lecture Notes in Comput. Sci. 10677, Springer, Cham (2017), 341–371. Google Scholar

  • [28]

    G. Kachigar and J.-P. Tillich, Quantum information set decoding algorithms, Post-quantum Cryptography, Lecture Notes in Comput. Sci. 10346, Springer, Cham (2017), 69–89. Google Scholar

  • [29]

    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Math. Libr. 16, North-Holland, Amsterdam, 1977, Google Scholar

  • [30]

    R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, Deep Space Netw. Prog. Rep. 44 (1978), 114–116. Google Scholar

  • [31]

    R. Misoczki and P. S. L. M. Barreto, Compact mceliece keys from goppa codes, Selected Areas in Cryptography, Springer, Berlin (2009), 376–392. Google Scholar

  • [32]

    R. Misoczki, J.-P. Tillich, N. Sendrier and P. L. S. M. Barreto, MDPC-McEliece: New McEliece variants from moderate density parity-check codes, International Symposium on Information Theory—ISIT 2013, IEEE Press, Piscataway (2013), 2069–2073. Google Scholar

  • [33]

    R. Niebuhr, Statistical decoding of codes over 𝔽q, Post-quantum Cryptography, Lecture Notes in Comput. Sci. 7071, Springer, Heidelberg (2011), 217–227. Google Scholar

  • [34]

    R. Niebuhr, E. Persichetti, P.-L. Cayrel, S. Bulygin and J. Buchmann, On lower bounds for information set decoding over 𝔽q and on the effect of partial knowledge, Int. J. Inf. Coding Theory 4 (2017), no. 1, 47–78. Google Scholar

  • [35]

    R. Nojima, H. Imai, K. Kobara and K. Morozov, Semantic security for the McEliece cryptosystem without random oracles, Des. Codes Cryptogr. 49 (2008), no. 1–3, 289–305. CrossrefGoogle Scholar

  • [36]

    E. Persichetti, Compact McEliece keys based on quasi-dyadic Srivastava codes, J. Math. Cryptol. 6 (2012), no. 2, 149–169. Google Scholar

  • [37]

    E. Persichetti, Secure and anonymous hybrid encryption from coding theory, Post-Quantum Cryptography—PQCrypto 2013, Berlin, Heidelberg (2013), 174–187. Google Scholar

  • [38]

    C. Peters, Information-set decoding for linear codes over 𝐅q, Post-quantum Cryptography, Lecture Notes in Comput. Sci. 6061, Springer, Berlin (2010), 81–94. Google Scholar

  • [39]

    E. Prange, The use of information sets in decoding cyclic codes, IRE Trans. IT-8 (1962), S5–S9. Google Scholar

  • [40]

    D. V. Sarwate, On the complexity of decoding Goppa codes, IEEE Trans. Inform. Theory IT-23 (1977), no. 4, 515–516. Google Scholar

  • [41]

    P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26 (1997), no. 5, 1484–1509. CrossrefGoogle Scholar

  • [42]

    F. Strenzke, A timing attack against the secret permutation in the McEliece PKC, Post-quantum Cryptography, Lecture Notes in Comput. Sci. 6061, Springer, Berlin (2010), 95–107. Google Scholar

  • [43]

    F. Strenzke, E. Tews, H. G. Molter, R. Overbeck and A. Shoufan, Side channels in the McEliece PKC, Post-quantum Cryptography, Lecture Notes in Comput. Sci. 5299, Springer, Berlin (2008), 216–229. Google Scholar

  • [44]

    https://bigquake.inria.fr/.

  • [45]

    https://bikesuite.org.

  • [46]

    http://christianepeters.wordpress.com/publications/tools/.

  • [47]

    https://classic.mceliece.org/.

  • [48]

    https://keccak.team/kangarootwelve.html.

About the article


Received: 2018-02-23

Accepted: 2018-08-15

Published Online: 2018-09-20

Published in Print: 2018-12-01


Citation Information: Journal of Mathematical Cryptology, Volume 12, Issue 4, Pages 221–239, ISSN (Online) 1862-2984, ISSN (Print) 1862-2976, DOI: https://doi.org/10.1515/jmc-2018-0027.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in