Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Mathematical Cryptology

Managing Editor: Magliveras, Spyros S. / Steinwandt, Rainer / Trung, Tran

Editorial Board: Blackburn, Simon R. / Blundo, Carlo / Burmester, Mike / Cramer, Ronald / Gilman, Robert / Gonzalez Vasco, Maria Isabel / Grosek, Otokar / Helleseth, Tor / Kim, Kwangjo / Koblitz, Neal / Kurosawa, Kaoru / Lauter, Kristin / Lange, Tanja / Menezes, Alfred / Nguyen, Phong Q. / Pieprzyk, Josef / Rötteler, Martin / Safavi-Naini, Rei / Shparlinski, Igor E. / Stinson, Doug / Takagi, Tsuyoshi / Williams, Hugh C. / Yung, Moti


CiteScore 2018: 1.41

SCImago Journal Rank (SJR) 2018: 0.342
Source Normalized Impact per Paper (SNIP) 2018: 1.076

Mathematical Citation Quotient (MCQ) 2018: 0.75

Online
ISSN
1862-2984
See all formats and pricing
More options …
Volume 13, Issue 2

Issues

Signcryption schemes with insider security in an ideal permutation model

Tarun Kumar BansalORCID iD: https://orcid.org/0000-0003-1346-9206 / Xavier Boyen / Josef Pieprzyk
Published Online: 2019-05-15 | DOI: https://doi.org/10.1515/jmc-2018-0006

Abstract

Signcryption aims to provide both confidentiality and authentication of messages more efficiently than performing encryption and signing independently. The “Commit-then-Sign & Encrypt” (CtS&E) method allows to perform encryption and signing in parallel. Parallel execution of cryptographic algorithms decreases the computation time needed to signcrypt messages. CtS&E uses weaker cryptographic primitives in a generic way to achieve a strong security notion of signcryption. Various message pre-processing schemes, also known as message padding, have been used in signcryption as a commitment scheme in CtS&E. Due to its elegance and versatility, the sponge structure turns out to be a useful tool for designing new padding schemes such as SpAEP [T. K. Bansal, D. Chang and S. K. Sanadhya, Sponge based CCA2 secure asymmetric encryption for arbitrary length message, Information Security and Privacy – ACISP 2015, Lecture Notes in Comput. Sci. 9144, Springer, Berlin 2015, 93–106], while offering further avenues for optimization and parallelism in the context of signcryption. In this work, we design a generic and efficient signcryption scheme featuring parallel encryption and signature on top of a sponge-based message-padding underlying structure. Unlike other existing schemes, the proposed scheme also supports arbitrarily long messages. We prove the construction secure when instantiated from weakly secure asymmetric primitives such as a trapdoor one-way encryption and a universal unforgeable signature. With a careful analysis and simple tweaks, we demonstrate how different combinations of weakly secure probabilistic and deterministic encryption and signature schemes can be used to construct a strongly secure signcryption scheme, further broadening the choices of underlying primitives to cover essentially any combination thereof. To the best of our knowledge, this is the first signcryption scheme based on the sponge structure that also offers strong security using weakly secure underlying asymmetric primitives, even deterministic ones, along with the ability to handle long messages, efficiently.

Keywords: Signcryption; sponge structure; universal forgery; message padding; provable security

MSC 2010: 94A60; 68P25

References

  • [1]

    M. Abe, R. Gennaro and K. Kurosawa, Tag-KEM/DEM: A new framework for hybrid encryption, J. Cryptology 21 (2008), no. 1, 97–130. CrossrefWeb of ScienceGoogle Scholar

  • [2]

    J. H. An, Y. Dodis and T. Rabin, On the security of joint signature and encryption, Advances in Cryptology – EUROCRYPT 2002, Lecture Notes in Comput. Sci. 2332, Springer, Berlin (2002), 83–107. Google Scholar

  • [3]

    C. Badertscher, F. Banfi and U. Maurer, A constructive perspective on signcryption security, Security and Cryptography for Networks – SCN 2018 Lecture Notes in Comput. Sci. 11035, Springer, Berlin (2018), 102–120. Google Scholar

  • [4]

    J. Baek, R. Steinfeld and Y. Zheng, Formal proofs for the security of signcryption, Public Key Cryptography – PKC 2002 Lecture Notes in Comput. Sci. 2274, Springer, Berlin (2002), 80–98. Google Scholar

  • [5]

    J. Baek, W. Susilo, J. K. Liu and J. Zhou, A new variant of the Cramer–Shoup KEM secure against chosen ciphertext attack, Applied Cryptography and Network Security – ACNS 2009 Lecture Notes in Comput. Sci. 5536, Springer, Berlin (2009), 143–155. Google Scholar

  • [6]

    T. K. Bansal, D. Chang and S. K. Sanadhya, Sponge based CCA2 secure asymmetric encryption for arbitrary length message, Information Security and Privacy – ACISP 2015 Lecture Notes in Comput. Sci. 9144, Springer, Berlin (2015), 93–106. Google Scholar

  • [7]

    M. Bellare and P. Rogaway, Optimal asymmetric encryption, Advances in Cryptology – EUROCRYPT 1994, Lecture Notes in Comput. Sci. 950, Springer, Berlin (1995), 92–111. Google Scholar

  • [8]

    M. Bellare and P. Rogaway, The exact security of digital signatures - how to sign with RSA and rabin, Advances in Cryptology – EUROCRYPT 1996, Lecture Notes in Comput. Sci. 1070, Springer, Berlin (1996), 399–416. Google Scholar

  • [9]

    M. Bellare and P. Rogaway, Code-based game-playing proofs and the security of triple encryption, preprint (2004), http://eprint.iacr.org/2004/331.

  • [10]

    M. Bellare and P. Rogaway, The security of triple encryption and a framework for code-based game-playing proofs, Advances in Cryptology – EUROCRYPT 2006, Lecture Notes in Comput. Sci. 4004, Springer, Berlin (2006), 409–426. Google Scholar

  • [11]

    G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, Duplexing the sponge: Single-pass authenticated encryption and other applications, Selected Areas in Cryptography – SAC 2011, Lecture Notes in Comput. Sci. 7118, Springer, Berlin (2011), 320–337. Google Scholar

  • [12]

    G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, Permutation-based encryption, authentication and authenticated encryption, preprint (2012).

  • [13]

    G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, Keccak, Advances in Cryptology – EUROCRYPT 2013, Lecture Notes in Comput. Sci. 7881, Springer, Berlin (2013), 313–314. Google Scholar

  • [14]

    T. E. Bjørstad and A. W. Dent, Building better signcryption schemes with tag-kems, Public Key Cryptography – PKC 2006, Lecture Notes in Comput. Sci. 3958, Springer, Berlin (2006), 491–507. Google Scholar

  • [15]

    T. E. Bjørstad, A. W. Dent and N. P. Smart, Efficient KEMs with partial message recovery, Cryptography and Coding, Lecture Notes in Comput. Sci. 4887, Springer, Berlin (2007), 233–256. Google Scholar

  • [16]

    D. Chiba, T. Matsuda, J. C. N. Schuldt and K. Matsuura, Efficient generic constructions of signcryption with insider security in the multi-user setting, Applied Cryptography and Network Security – ACNS 2011, Lecture Notes in Comput. Sci. 6715, Springer, Berlin (2011), 220–237. Google Scholar

  • [17]

    R. Cramer and V. Shoup, A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack, Advances in Cryptology – Crypto 1998, Lecture Notes in Comput. Sci. 1462, Springer, Berlin (1998), 13–25. Google Scholar

  • [18]

    A. W. Dent, A designer’s guide to KEMs, Cryptography and Coding, Lecture Notes in Comput. Sci. 2898, Springer, Berlin (2003), 133–151. Google Scholar

  • [19]

    A. W. Dent, Hybrid signcryption schemes with insider security, Information Security and Privacy – ACISP 2005, Lecture Notes in Comput. Sci. 3574, Springer, Berlin (2005), 253–266. Google Scholar

  • [20]

    A. W. Dent, Hybrid signcryption schemes with outsider security, Information Security – ISC 2005, Lecture Notes in Comput. Sci. 3650, Springer, Berlin (2005), 203–217. Google Scholar

  • [21]

    A. W. Dent and Y. Zheng, Practical Signcryption, Springer, Berlin, 2010. Google Scholar

  • [22]

    Y. Dodis, M. J. Freedman, S. Jarecki and S. Walfish, Versatile padding schemes for joint signature and encryption, Proceedings of the 11th ACM Conference on Computer and Communications Security – CCS’04, ACM, New York (2004), 344–353. Google Scholar

  • [23]

    Y. Dodis, M. J. Freedman and S. Walfish, Parallel signcryption with oaep, pss-r, and other feistel paddings, preprint (2003), http://eprint.iacr.org/2003/043.

  • [24]

    E. Fujisaki and T. Okamoto, Secure integration of asymmetric and symmetric encryption schemes, J. Cryptology 26 (2013), no. 1, 80–101. CrossrefWeb of ScienceGoogle Scholar

  • [25]

    T. E. Gamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inform. Theory 31 (1985), no. 4, 469–472. CrossrefGoogle Scholar

  • [26]

    M. P. Guido Bertoni, Joan Daemen and G. V. Assche, Sponge functions, ECRYPT Hash Function Workshop, 2007.

  • [27]

    E. Kiltz, Chosen-ciphertext security from tag-based encryption, Theory of Cryptography – TCC 2006, Lecture Notes in Comput. Sci. 3876, Springer, Berlin (2006), 581–600. Google Scholar

  • [28]

    K. Kurosawa and Y. Desmedt, A new paradigm of hybrid encryption scheme, Advances in Cryptology – CRYPTO 2004, Lecture Notes in Comput. Sci. 3152, Springer, Berlin (2004), 426–442. Google Scholar

  • [29]

    B. Libert and J. Quisquater, Efficient signcryption with key privacy from gap diffie-hellman groups, Public Key Cryptography – PKC 2004, Lecture Notes in Comput. Sci. 2947, Springer, Berlin (2004), 187–200. Google Scholar

  • [30]

    J. Malone-Lee and W. Mao, Two birds one stone: Signcryption using RSA, Topics in Cryptology – CT-RSA 2003, Lecture Notes in Comput. Sci. 2612, Springer, Berlin (2003), 211–225. Google Scholar

  • [31]

    T. Matsuda, K. Matsuura and J. C. N. Schuldt, Efficient constructions of signcryption schemes and signcryption composability, Progress in Cryptology – INDOCRYPT 2009, Lecture Notes in Comput. Sci. 5922, Springer, Berlin (2009), 321–342. Google Scholar

  • [32]

    T. Okamoto and D. Pointcheval, REACT: Rapid enhanced-security asymmetric cryptosystem transform, Topics in Cryptology – CT-RSA 2001, Lecture Notes in Comput. Sci. 2020, Springer, Berlin (2001), 159–175. Google Scholar

  • [33]

    J. Pieprzyk and D. Pointcheval, Parallel authentication and public-key encryption, Information Security and Privacy – ACISP 2003, Lecture Notes in Comput. Sci. 2727, Springer, Berlin (2003), 387–401. Google Scholar

  • [34]

    J. Pieprzyk and D. Pointcheval, Parallel signcryption, Practical Signcryption, Springer, Berlin (2010), 175–192. Web of ScienceGoogle Scholar

  • [35]

    V. Shoup, OAEP reconsidered, J. Cryptology 15 (2002), no. 4, 223–249. CrossrefGoogle Scholar

  • [36]

    R. Steinfeld and Y. Zheng, A signcryption scheme based on integer factorization, Information Security – ISW 2000, Lecture Notes in Comput. Sci. 1975, Springer, Berlin (2000), 308–322. Google Scholar

  • [37]

    C. H. Tan, Signcryption scheme in multi-user setting without random oracles, Advances in Information and Computer Security – IWSEC 2008, Lecture Notes in Comput. Sci. 5312, Springer, Berlin (2008), 64–82. Google Scholar

  • [38]

    Y. Zheng, Digital signcryption or how to achieve cost(signature & encryption)<<cost(signature) + cost(encryption), Advances in Cryptology – CRYPTO 1997, Lecture Notes in Comput. Sci. 1294, Springer, Berlin (1997), 165–179. Google Scholar

  • [39]

    SHA3 Hash function competition, 2007; http://csrc.nist.gov/groups/ST/hash/sha-3/index.html, last visited 02-Jan-2017.

About the article


Received: 2018-02-19

Revised: 2019-03-19

Accepted: 2019-03-19

Published Online: 2019-05-15

Published in Print: 2019-06-01


Funding Source: Australian Research Council

Award identifier / Grant number: FT140101145

Award identifier / Grant number: DP180102199

Funding Source: Narodowe Centrum Nauki

Award identifier / Grant number: DEC-2014/15/B/ST6/05130

Xavier Boyen is supported by Australian Research Council Future Fellowship grant FT140101145. Josef Pieprzyk was supported by Polish National Science Centre grant DEC-2014/15/B/ST6/05130 and Australian Research Council Discovery grant DP180102199.


Citation Information: Journal of Mathematical Cryptology, Volume 13, Issue 2, Pages 117–150, ISSN (Online) 1862-2984, ISSN (Print) 1862-2976, DOI: https://doi.org/10.1515/jmc-2018-0006.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in