[1]

E. Bach and J. Shallit,
Algorithmic Number Theory. Vol. 1: Efficient Algorithms,
MIT Press, Cambridge, 1996.
Google Scholar

[2]

M. Bellare and P. Rogaway,
Random oracles are practical: A paradigm for designing efficient protocols,
ACM Conference on Computer and Communications Security,
ACM Press, New York (1993), 62–73.
Google Scholar

[3]

D. Boneh, G. Durfee and N. Howgrave-Graham,
Factoring $N={p}^{r}q$ for large *r*,
Advances in Cryptology—CRYPTO ’99,
Lecture Notes in Comput. Sci. 1666,
Springer, Berlin (1999), 326–337.
Google Scholar

[4]

P. C. Caranay and R. Scheidler,
An efficient seventh power residue symbol algorithm,
Int. J. Number Theory 6 (2010), no. 8, 1831–1853.
CrossrefWeb of ScienceGoogle Scholar

[5]

H. Cohen,
A Course in Computational Algebraic Number Theory,
Grad. Texts in Math. 138,
Springer, Berlin, 1993.
Google Scholar

[6]

I. B. Damgård,
On the randomness of Legendre and Jacobi sequences,
Advances in Cryptology—CRYPTO’88,
Lecture Notes in Comput. Sci. 403,
Springer, Berlin (1990), 163–172.
Google Scholar

[7]

I. B. Damgård and G. S. Frandsen,
Efficient algorithms for the gcd and cubic residuosity in the ring of Eisenstein integers,
J. Symbolic Comput. 39 (2005), no. 6, 643–652.
CrossrefGoogle Scholar

[8]

H. Davenport,
On the distribution of quadratic residues (mod p),
J. Lond. Math. Soc. 6 (1931), no. 1, 49–54.
Google Scholar

[9]

H. Davenport,
On the distribution of quadratic residues (mod p). II,
J. Lond. Math. Soc. 8 (1933), no. 1, 46–52.
Google Scholar

[10]

W. Diffie and M. E. Hellman,
New directions in cryptography,
IEEE Trans. Inform. Theory IT-22 (1976), no. 6, 644–654.
Google Scholar

[11]

C. Ding, D. Pei and A. Salomaa,
Chinese Remainder Theorem. Applications in Computing, Coding, Cryptography,
World Scientific, River Edge, 1996.
Google Scholar

[12]

A. Fiat and A. Shamir,
How to prove yourself: Practical solutions to identification and signature problems,
Advances in Cryptology—CRYPTO’86,
Lecture Notes in Comput. Sci. 263,
Springer, Berlin (1987), 186–194.
Google Scholar

[13]

A. Fujioka, T. Okamoto and S. Miyaguchi,
ESIGN: An efficient digital signature implementation for smart cards,
Advances in Cryptology—EUROCRYPT’91,
Lecture Notes in Comput. Sci. 547,
Springer, Berlin (1991), 446–457.
Google Scholar

[14]

O. Goldreich,
Foundations of Cryptography. Basic Tools,
Cambridge University, Cambridge, 2001.
Google Scholar

[15]

S. Goldwasser, S. Micali and R. L. Rivest,
A digital signature scheme secure against adaptive chosen-message attacks. Special issue on cryptography,
SIAM J. Comput. 17 1988, no. 2, 281–308.
CrossrefGoogle Scholar

[16]

L. Goubin, C. Mauduit and A. Sárközy,
Construction of large families of pseudorandom binary sequences,
J. Number Theory 106 (2004), no. 1, 56–69.
CrossrefGoogle Scholar

[17]

L. Granboulan,
How to repair ESIGN,
Security in Communication Networks—SCN 2002,
Lecture Notes in Comput. Sci. 2576,
Springer, Berlin (2003), 234–240.
Google Scholar

[18]

K. Ireland and M. Rosen,
A Classical Introduction to Modern Number Theory, 2nd ed.,
Grad. Texts in Math. 84,
Springer, New York, 1990.
Google Scholar

[19]

J. Katz,
Digital Signatures,
Springer, New York, 2010.
Google Scholar

[20]

F. Lemmermeyer,
The Euclidean algorithm in algebraic number fields,
Exp. Math. 13 (1995), no. 5, 385–416.
Google Scholar

[21]

A. K. Lenstra,
Unbelievable security (Matching AES security using public key systems),
Advances in Cryptology—ASIACRYPT 2001,
Lecture Notes in Comput. Sci. 2248,
Springer, Berlin (2001), 67–86.
Google Scholar

[22]

A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovász,
Factoring polynomials with rational coefficients,
Math. Ann. 261 (1982), no. 4, 515–534.
CrossrefGoogle Scholar

[23]

A. K. Lenstra and E. Verheul,
Selecting cryptographic key sizes,
J. Cryptology 14 (2001), no. 4, 255–293.
CrossrefGoogle Scholar

[24]

H. W. Lenstra, Jr.,
Euclid’s algorithm in cyclotomic fields,
J. Lond. Math. Soc. (2) 10 (1975), no. 4, 457–465.
Google Scholar

[25]

H. W. Lenstra, Jr.,
Factoring integers with elliptic curves,
Ann. of Math. (2) 126 (1987), no. 3, 649–673.
CrossrefGoogle Scholar

[26]

H. W. Lenstra, Jr.,
The number field sieve: An annotated bibliography,
The Development of the Number Field Sieve,
Lecture Notes in Math. 1554,
Springer, Berlin (1993), 1–3.
Google Scholar

[27]

N. Manohar and B. Fisch,
Factoring $n={p}^{2}q$,
Final project report CS359C, Stanford University, 2017.
Google Scholar

[28]

A. May,
Secret exponent attacks on RSA-type schemes with moduli $N={p}^{r}q$,
Public Key Cryptography—PKC 2004,
Lecture Notes in Comput. Sci. 2947,
Springer, Berlin (2004), 218–230.
Google Scholar

[29]

A. Menezes, M. Qu, D. Stinson and Y. Wang,
Evaluation of security level of cryptography: ESIGN signature scheme,
External Evaluation Report ex-1053-2000, CRYPTREC, 2001.
Google Scholar

[30]

T. Okamoto, E. Fujisaki and H. Morita,
TSH-ESIGN: Efficient digital signature scheme using trisection size hash,
Submission to IEEE P1363a, November 1998. [Online; accessed 7-February-2019].

[31]

T. Okamoto and A. Shibaishi,
A fast signature scheme based on quadratic inequalities,
1985 IEEE Symposium on Security and Privacy,
IEEE Press, Piscataway (1985), 123–133.
Google Scholar

[32]

T. Okamoto and S. Uchiyama,
A new public-key cryptosystem as secure as factoring,
Advances in Cryptology—EUROCRYPT’98,
Lecture Notes in Comput. Sci. 1403,
Springer, Berlin (1998), 308–318.
Google Scholar

[33]

R. Peralta,
On the distribution of quadratic residues and nonresidues modulo a prime number,
Math. Comp. 58 (1992), no. 197, 433–440.
CrossrefGoogle Scholar

[34]

R. Peralta and E. Okamoto,
Faster factoring of integers of a special form,
IEICE Trans. Fundam. Electron. Comm. Comp. Sci. E79 (1996), no. A4, 489–493.
Google Scholar

[35]

R. L. Rivest, A. Shamir and L. Adleman,
A method for obtaining digital signatures and public-key cryptosystems,
Comm. ACM 21 (1978), no. 2, 120–126.
CrossrefGoogle Scholar

[36]

A. Sárközy and C. L. Stewart,
On pseudorandomness in families of sequences derived from the Legendre symbol,
Period. Math. Hungar. 54 (2007), no. 2, 163–173.
CrossrefGoogle Scholar

[37]

H. Sato, T. Takagi, S. Tezuka and K. Takaragi,
Generalized powering functions and their application to digital signatures,
Advances in Cryptology—ASIACRYPT 2003,
Lecture Notes in Comput. Sci. 2894,
Springer, Berlin (2003), 434–451.
Google Scholar

[38]

R. Scheidler and H. C. Williams,
A public-key cryptosystem utilizing cyclotomic fields,
Des. Codes Cryptogr. 6 (1995), no. 2, 117–131.
CrossrefGoogle Scholar

[39]

K. Schmidt-Samoa,
A new Rabin-type trapdoor permutation equivalent to factoring,
Electron. Notes Theor. Comput. Sci. 157 (2006), no. 3, 79–94.
CrossrefGoogle Scholar

[40]

K. Schmidt-Samoa and T. Takagi,
Paillier’s cryptosystem modulo ${p}^{2}q$ and its applications to trapdoor commitment schemes,
Progress in Cryptology—Mycrypt 2005,
Lecture Notes in Comput. Sci. 3715,
Springer, Berlin (2005), 296–313.
Google Scholar

[41]

C. P. Schnorr,
Efficient signature generation by smart cards,
J. Cryptology 4 (1991), no. 3, 161–174.
Google Scholar

[42]

J. Stern, D. Pointcheval, J. Malone-Lee and N. P. Smart,
Flaws in applying proof methodologies to signature schemes,
Advances in cryptology—CRYPTO 2002,
Lecture Notes in Comput. Sci. 2442,
Springer, Berlin (2002), 93–110.
Google Scholar

[43]

T. Takagi,
Fast RSA-type cryptosystem modulo ${p}^{k}q$.,
Advances in Cryptology—CRYPTO’98,
Lecture Notes in Comput. Sci. 1462,
Springer, Berlin (1998), 318–326.
Google Scholar

[44]

L. C. Washington,
Introduction to Cyclotomic Fields, 2nd ed.,
Grad. Texts Math. 83,
Springer, New York, 1997.
Google Scholar

[45]

A. Weilert,
Fast computation of the biquadratic residue symbol,
J. Number Theory 96 (2002), no. 1, 133–151.
CrossrefGoogle Scholar

[46]

H. C. Williams,
An ${M}^{3}$ public-key encryption scheme,
Advances in Cryptology—CRYPTO’85,
Lecture Notes in Comput. Sci. 218,
Springer, Berlin (1986), 358–368.
Google Scholar

[47]

BlueKrypt, Cryptographic key length recommendations, 2018.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.