Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year


IMPACT FACTOR 2017: 1.633
5-year IMPACT FACTOR: 1.642

CiteScore 2017: 1.70

SCImago Journal Rank (SJR) 2017: 0.591
Source Normalized Impact per Paper (SNIP) 2017: 1.160

Online
ISSN
1437-4358
See all formats and pricing
More options …
Volume 42, Issue 4

Issues

The Micromorphic Approach to Generalized Heat Equations

Weijie Liu
  • Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, 2 Rue Linggong, 116024 Dalian, China
  • ICD/LASMIS, UMR-CNRS 6281, University of Technology of Troyes, 12 Rue Marie Curie BP2060, 10000 Troyes Cedex, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Khemais Saanouni
  • Corresponding author
  • ICD/LASMIS, UMR-CNRS 6281, University of Technology of Troyes, 12 Rue Marie Curie BP2060, 10000 Troyes Cedex, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Samuel Forest / Ping Hu
  • Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, 2 Rue Linggong, 116024 Dalian, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-22 | DOI: https://doi.org/10.1515/jnet-2016-0080

Abstract

In this paper, the micromorphic approach, previously developed in the mechanical context is applied to heat transfer and shown to deliver new generalized heat equations as well as the nonlocal effects. The latter are compared to existing formulations: the classical Fourier heat conduction, the hyperbolic type with relaxation time, the gradient of temperature or entropy theories, the double temperature model, the micro-temperature model or micro-entropy models. A new pair of thermodynamically-consistent micromorphic heat equations are derived from appropriate Helmholtz-free energy potentials depending on an additional micromorphic temperature and its first gradient. The additional micromorphic temperature associated with the classical local temperature is introduced as an independent degree of freedom, based on the generalized principle of virtual power. This leads to a new thermal balance equation taking into account the nonlocal thermal effects and involving an internal length scale which represents the characteristic size of the system. Several existing extended generalized heat equations could be retrieved from constrained micromorphic heat equations with suitable selections of the Helmholtz-free energy and heat flux expressions. As an example the propagation of plane thermal waves is investigated according to the various generalized heat equations. Possible applications to fast surface processes, nanostructured media and nanosystems are also discussed.

Keywords: hyperbolic heat conduction; finite propagation; micromorphic theory; nonlocal effects

References

  • [1]

    J. Fourier, Theorie analytique de la chaleur, par M. Fourier. Chez Firmin Didot, père et fils, 1822.

  • [2]

    J. Fourier, The Analytical Theory of Heat. Translated, with notes, by Alexander Freeman. University Press, Cambridge, 1878.Google Scholar

  • [3]

    C. Cattaneo, Sulla conduzione del calore, in: A. Pignedoli, (ed.) Some Aspects of Diffusion Theory, Vol. 42, Springer-Verlag, Berlin, (1948).Google Scholar

  • [4]

    C. Cattaneo, Sur une forme de lequation de la chaleur eliminant le paradoxe dune propagation instantanee, C. R. Hebd. Seances Acad. Sci. 247 (1958), no. 4, 431–433.Google Scholar

  • [5]

    P. Vernotte, Les paradoxes de la théorie continue de léquation de la chaleur, C. R. Hebd. Seances Acad. Sci. 246 (1958), no. 22, 3154–3155.Google Scholar

  • [6]

    B. D. Coleman, M. Fabrizio and D. R. Owen, On the thermodynamics of second sound in dielectric crystals, Arch. Rational Mech. Anal. 80 (1982), no. 2, 135–158.Google Scholar

  • [7]

    B. D. Coleman, M. Fabrizio and D. R. Owen, Thermodynamics and the constitutive relations for second sound in crystals, in: G. Grioli, (ed.) Thermodynamics and Constitutive Equations, Vol. 228, Springer-Verlag, Berlin, 1985, 20–43.Google Scholar

  • [8]

    D. Jou, J. Casas-Vazquez and G. Lebon, Extended irreversible thermodynamics, Rep. Prog. Phys. 51 (1988), no. 8, 1105–1179.CrossrefGoogle Scholar

  • [9]

    I. Müller and T. Ruggeri, Extended Thermodynamics, Vol. 37. Springer Tracts in Natural Philosophy. Springer-Verlag, New York, 1993.Google Scholar

  • [10]

    C. Bai and A. S. Lavine, On hyperbolic heat conduction and the second law of thermodynamics, J. Heat Transfer 117 (1995), no. 2, 256–263.CrossrefGoogle Scholar

  • [11]

    A. Barletta and E. Zanchini, Hyperbolic heat conduction and local equilibrium: A second law analysis, Int. J. Heat. Mass Transf. 40 (1997), no. 5, 1007–1016.CrossrefGoogle Scholar

  • [12]

    E. Zanchini, Hyperbolic-heat-conduction theories and nondecreasing entropy, Phys. Rev. B 60 (1999), no. 2, 991–997.CrossrefGoogle Scholar

  • [13]

    R. J. Swenson, Heat conduction - finite or infinite propagation, J. Non-Equilib. Thermodyn. 3 (1978), no. 1, 39–48.Google Scholar

  • [14]

    V. Peshkov, Second sound in helium II, J. Phys. USSR 8 (1944), 381–386.Google Scholar

  • [15]

    V. Peshkov, Determination of the velocity of propagation of the second sound in helium II, J. Phys. USSR 10 (1946), 389–398.Google Scholar

  • [16]

    H. E. Jackson and C. T. Walker, Thermal conductivity, second sound, and phonon-phonon interactions in NaF, Phys. Rev. B 3 (1971), no. 4, 1428–1439.CrossrefGoogle Scholar

  • [17]

    V. Narayanamurti and R. C. Dynes, Observation of second sound in bismuth, Phys. Rev. Lett. 28 (1972), no. 22, 1461–1465.CrossrefGoogle Scholar

  • [18]

    T. Da Yu, Shock wave formation around a moving heat source in a solid with finite speed of heat propagation, Int. J. Heat. Mass Transf. 32 (1989), no. 10, 1979–1987.CrossrefGoogle Scholar

  • [19]

    J. Wang and J.-S. Wang, Carbon nanotube thermal transport: Ballistic to diffusive, Appl. Phys. Lett. 88 (2006), no. 11, 111909.CrossrefGoogle Scholar

  • [20]

    D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, et al. Nanoscale thermal transport, J. Appl. Phys. 93 (2003), no. 2, 793–818.CrossrefGoogle Scholar

  • [21]

    D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, et al. Nanoscale thermal transport. II. 2003–2012, Appl. Phys. Rev. 1 (2014), no. 1, 011305.CrossrefGoogle Scholar

  • [22]

    D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, 2nd ed., John Wiley & Sons, Chichester, 2014.Google Scholar

  • [23]

    D. Jou and A. Cimmelli Vito, Constitutive equations for heat conduction in nanosystems and nonequilibrium processes: An overview, Commun. Appl. Ind. Math. 7 (2016), no. 2, 196–226.Google Scholar

  • [24]

    B. C. Larson, J. Z. Tischler and D. M. Mills, Nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation, J. Mater. Res. 1 (1986), no. 1, 144–154.CrossrefGoogle Scholar

  • [25]

    A. Sellitto, V. A. Cimmelli and D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems. SEMA SIMAI Springer Series, vol. 6. Springer International Publishing, Switzerland, 2016.Google Scholar

  • [26]

    J. Kaiser, T. Feng, J. Maassen, X. Wang, X. Ruan and M. Lundstrom, Thermal transport at the nanoscale: A Fourier’s law vs. phonon Boltzmann equation study, J. Appl. Phys. 121 (2017), no. 4, 044302.CrossrefGoogle Scholar

  • [27]

    F. X. Alvarez and D. Jou, Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes, Appl. Phys. Lett. 90 (2007), no. 8, 083109.CrossrefGoogle Scholar

  • [28]

    Y. Guo and M. Wang, Phonon hydrodynamics and its applications in nanoscale heat transport, Phys. Rep. 595 (2015), 1–44.CrossrefGoogle Scholar

  • [29]

    C. Körner and H. W. Bergmann, The physical defects of the hyperbolic heat conduction equation, Appl. Phys. A 67 (1998), no. 4, 397–401.CrossrefGoogle Scholar

  • [30]

    I. Müeller, Zur Ausbreitungsgeschwindigkeit Von Störungen in Kontinuierlichen Medien, Technische Hochschule, Aachen, 1966.Google Scholar

  • [31]

    I. Muller, Zum Paradoxon der Warmeleitungstheorie, Z. Phys. 198 (1967), 329–344.CrossrefGoogle Scholar

  • [32]

    D. Jou, J. Casas-Vázquez and G. Lebon, Extended Irreversible Thermodynamics, Springer Netherlands, Dordrecht, 2010.Google Scholar

  • [33]

    İ. Temizer and P. Wriggers, A micromechanically motivated higher-order continuum formulation of linear thermal conduction, ZAMM J. Appl. Math. Mech. 90 (2010), no. 10–11, 768–782.CrossrefGoogle Scholar

  • [34]

    R. A. Guyer and J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation, Phys. Rev. 148 (1966), no. 2, 766–778.CrossrefGoogle Scholar

  • [35]

    S. Both, B. Czél, T. Fülöp, G. Gróf, Á. Gyenis, R. Kovács, et al. Deviation from the Fourier law in room-temperature heat pulse experiments, J. Non-Equilib. Thermodyn. 41 (2016), no. 1, 41–48.Google Scholar

  • [36]

    P. Ván and T. Fülöp, Universality in heat conduction theory: Weakly nonlocal thermodynamics, Ann. Phys. 524 (2012), no. 8, 470–478.CrossrefGoogle Scholar

  • [37]

    G. Lebon, Heat conduction at micro and nanoscales: A review through the prism of extended irreversible thermodynamics, J. Non-Equilib. Thermodyn. 39 (2014), no. 1, 35–59.Google Scholar

  • [38]

    S. L. Sobolev, Two-temperature discrete model for nonlocal heat conduction, J. Phys. III France 3 (1993), no. 12, 2261–2269.CrossrefGoogle Scholar

  • [39]

    S. L. Sobolev, Two-temperature Stefan problem, Phys. Lett. 197 (1995), no. 3, 243–246.CrossrefGoogle Scholar

  • [40]

    L. S. Sergei, Local non-equilibrium transport models, Physics-Uspekhi 40 (1997), no. 10, 1043.CrossrefGoogle Scholar

  • [41]

    S. L. Sobolev, Nonlocal diffusion models: Application to rapid solidification of binary mixtures, Int. J. Heat. Mass Transf. 71 (2014), 295–302.CrossrefGoogle Scholar

  • [42]

    S. L. Sobolev, Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses, Int. J. Heat. Mass Transf. 94 (2016), 138–144.CrossrefGoogle Scholar

  • [43]

    D. Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales, J. Heat Transfer 117 (1995), no. 1, 8–16.CrossrefGoogle Scholar

  • [44]

    G. Chen, Ballistic-diffusive heat-conduction equations, Phys. Rev. Lett. 86 (2001), no. 11, 2297–2300.CrossrefGoogle Scholar

  • [45]

    A. V. Luikov, V. A. Bubnov and I. A. Soloviev, On wave solutions of the heat-conduction equation, Int. J. Heat. Mass Transf. 19 (1976), no. 3, 245–248.CrossrefGoogle Scholar

  • [46]

    V. A. Bubnov, Wave concepts in the theory of heat, Int. J. Heat. Mass Transf. 19 (1976), no. 2, 175–184.CrossrefGoogle Scholar

  • [47]

    P. Ireman and Q.-S. Nguyen, Using the gradients of temperature and internal parameters in continuum thermodynamics, C. R. MeC. 332 (2004), no. 4, 249–255.CrossrefGoogle Scholar

  • [48]

    G. A. Maugin, Internal variables and dissipative structures, J. Non-Equilib. Thermodyn. 15 (1990), no. 2, 173–192.Google Scholar

  • [49]

    G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts, J. Non-Equilib. Thermodyn. 19 (1994), no. 3, 217–249.Google Scholar

  • [50]

    G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part II. Applications, J. Non-Equilib. Thermodyn. 19 (1994), no. 3, 250–289.Google Scholar

  • [51]

    S. Forest, J.-M. Cardona and R. Sievert, Thermoelasticity of second-grade media, in: Maugin G. A., Drouot R., Sidoroff F. (eds.), Continuum Thermomechanics, Springer Netherlands, Dordrecht, (2000), 163–176.Google Scholar

  • [52]

    S. Forest and M. Amestoy, Hypertemperature in thermoelastic solids, C. R. MeC. 336 (2008), no. 4, 347–353.CrossrefGoogle Scholar

  • [53]

    Q.-S. Nguyen, Gradient thermodynamics and heat equations, C. R. MeC. 338 (2010), no. 6, 321–326.CrossrefGoogle Scholar

  • [54]

    E. C. Aifantis, Further comments on the problem of heat extraction from hot dry rocks, Mech. Res. Commun. 7 (1980), no. 4, 219–226.CrossrefGoogle Scholar

  • [55]

    E. C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980), no. 3, 265–296.CrossrefGoogle Scholar

  • [56]

    S. Forest and E. C. Aifantis, Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua, Int. J. Solids Struct. 47 (2010), no. 25–26, 3367–3376.CrossrefGoogle Scholar

  • [57]

    I. Müller, Thermodynamics of mixtures and phase field theory, Int. J. Solids Struct. 38 (2001), no. 6–7, 1105–1113.CrossrefGoogle Scholar

  • [58]

    C. Wozniak, Thermoelasticity of non-simple oriented materials, Int. J. Eng. Sci. 5 (1967), no. 8, 605–612.CrossrefGoogle Scholar

  • [59]

    A. C. Eringen and E. S. Suhubi, Nonlinear theory of simple micro-elastic solids—I, Int. J. Eng. Sci. 2 (1964), no. 2, 189–203.CrossrefGoogle Scholar

  • [60]

    E. S. Suhubl and A. C. Eringen, Nonlinear theory of micro-elastic solids—II, Int. J. Eng. Sci. 2 (1964), no. 4, 389–404.CrossrefGoogle Scholar

  • [61]

    R. A. Grot, Thermodynamics of a continuum with microstructure, Int. J. Eng. Sci. 7 (1969), no. 8, 801–814.CrossrefGoogle Scholar

  • [62]

    D. Ieşan, On the theory of heat conduction in micromorphic continua, Int. J. Eng. Sci. 40 (2002), no. 16, 1859–1878.CrossrefGoogle Scholar

  • [63]

    A. C. Eringen, Mechanics of micromorphic materials, in: Görtler H. (ed.), Applied Mechanics: Proceedings of the Eleventh International Congress of Applied Mechanics Munich (Germany) 1964, Springer, Berlin, Heidelberg (1966), 131–138.Google Scholar

  • [64]

    A. C. Eringen, Balance laws of micromorphic mechanics, Int. J. Eng. Sci. 8 (1970), no. 10, 819–828.CrossrefGoogle Scholar

  • [65]

    A. C. Eringen, Balance laws of micromorphic continua revisited, Int. J. Eng. Sci. 30 (1992), no. 6, 805–810.CrossrefGoogle Scholar

  • [66]

    A. C. Eringen, Microcontinuum Field Theories: I. Foundations and Solids, Springer Verlag, New York, 1999.Google Scholar

  • [67]

    S. L. Koh, Theory of a second-order microfluid, Rheol. Acta 12 (1973), no. 3, 418–424.CrossrefGoogle Scholar

  • [68]

    P. Říha, On the theory of heat-conducting micropolar fluids with microtemperatures, Acta Mech. 23 (1975), no. 1, 1–8.CrossrefGoogle Scholar

  • [69]

    P. Riha, Poiseuille flow of microthermopolar fluids, Acta Tech. 22 (1977), 602–613.Google Scholar

  • [70]

    P. Verma, D. Singh and K. Singh, Hagen-Poiseuille flow of microthermopolar fluids in a circular pipe, Acta Tech. 24 (1979), 402–412.Google Scholar

  • [71]

    P. Říha, On the microcontinuum model of heat conduction in materials with inner structure, Int. J. Eng. Sci. 14 (1976), no. 6, 529–535.CrossrefGoogle Scholar

  • [72]

    A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Royal Soc. London Ser. 432 (1991), no. 1885, 171–194.CrossrefGoogle Scholar

  • [73]

    A. E. Green and P. M. Naghdi, On thermodynamics and the nature of the second law, Proc. Royal Soc. London Ser. 357 (1977), no. 1690, 253–270.CrossrefGoogle Scholar

  • [74]

    A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elast. 31 (1993), no. 3, 189–208.CrossrefGoogle Scholar

  • [75]

    D. Ieşan and L. Nappa, On the theory of heat for micromorphic bodies, Int. J. Eng. Sci. 43 (2005), no. 1–2, 17–32.CrossrefGoogle Scholar

  • [76]

    S. Forest, Micromorphic approach for gradient elasticity, viscoplasticity, and damage, J. Eng. Mech. 135 (2009), no. 3, 117–131.CrossrefGoogle Scholar

  • [77]

    K. Saanouni and M. Hamed, Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects, Int. J. Solids Struct. 50 (2013), no. 14–15, 2289–2309.CrossrefGoogle Scholar

  • [78]

    C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics. The Non-Linear Field Theories of Mechanics, Springer, Berlin, Heidelberg, 2004.Google Scholar

  • [79]

    W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure, J. Heat Transfer 112 (1990), no. 3, 555–560.CrossrefGoogle Scholar

  • [80]

    Q.-S. Nguyen and S. Andrieux, The non-local generalized standard approach: A consistent gradient theory, C. R. MeC. 333 (2005), no. 2, 139–145.CrossrefGoogle Scholar

  • [81]

    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), no. 2, 258–267.CrossrefGoogle Scholar

  • [82]

    M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D 92 (1996), no. 3–4, 178–192.CrossrefGoogle Scholar

  • [83]

    W. Dreyer and H. Struchtrup, Heat pulse experiments revisited., Continuum Mech. Thermodyn. 5 (1993), no. 1, 3–50.CrossrefGoogle Scholar

  • [84]

    D. Ieşan, Thermoelasticity of bodies with microstructure and microtemperatures, Int. J. Solids Struct. 44 (2007), no. 25–26, 8648–8662.CrossrefGoogle Scholar

  • [85]

    D. Ieşan and R. Quintanilla, On thermoelastic bodies with inner structure and microtemperatures, J. Math. Anal. Appl. 354 (2009), no. 1, 12–23.CrossrefGoogle Scholar

  • [86]

    D. Ieşan and A. Scalia, Plane deformation of elastic bodies with microtemperatures, Mech. Res. Commun. 37 (2010), no. 7, 617–621.CrossrefGoogle Scholar

  • [87]

    P. Germain, The method of virtual power in continuum mechanics. Part 2: Microstructure, SIAM J. Appl. Math. 25 (1973), no. 3, 556–575.CrossrefGoogle Scholar

  • [88]

    F. Mandl, Statistical Physics, 2nd ed., The Manchester Physics. John Wiley & Sons, Chichester, 2008.Google Scholar

  • [89]

    R. H. Swendsen, Statistical mechanics of colloids and Boltzmann’s definition of the entropy, Am. J. Phys. 74 (2006), no. 3, 187–190.CrossrefGoogle Scholar

  • [90]

    J. Šesták and P. Holba, Heat inertia and temperature gradient in the treatment of DTA peaks, J. Therm. Anal. Calorim. 113 (2013), no. 3, 1633–1643.CrossrefGoogle Scholar

  • [91]

    P. Holba and J. Šesták, Heat inertia and its role in thermal analysis, J. Therm. Anal. Calorim. 121 (2015), no. 1, 303–307.CrossrefGoogle Scholar

About the article

Received: 2016-11-27

Accepted: 2017-03-31

Revised: 2017-03-06

Published Online: 2017-04-22

Published in Print: 2017-10-26


The financial support from China Scholarship Council and ANR through the Program Micromorfing with contract ANR-14-CE07-0035-01 is fully acknowledged.


Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 42, Issue 4, Pages 327–357, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2016-0080.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Yooseob Song and George Z. Voyiadjis
International Journal of Solids and Structures, 2017

Comments (0)

Please log in or register to comment.
Log in