[1]

Lebon G., Jou D., and Vázquez J., *Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers*, SpringerLink: Springer e-Books. Springer London, Limited, 2008. Google Scholar

[2]

Grmela M. and Öttinger H. C., Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, *Phys. Rev. E* 56 (1997), 6620–6632. CrossrefGoogle Scholar

[3]

Edelen D. G. B., The thermodynamics of evolving chemical system and the approach to equilibrium, in: Prigogine I., Rice S. (eds.), *Advances in Chemical Physics*, number v. 33 in Advances in Chemical Physics, Wiley (2009), 400–441. Google Scholar

[4]

Eringen A., *Continuum Physics: Polar and Non-Local Field Theories*, Continuum Physics. Academic Press, 1971. Google Scholar

[5]

Mielke A., M. Peletier A., and Renger D. R. M., On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion, *Potential Analysis* **41** (2014), no. 4, 1293–1327. Web of ScienceGoogle Scholar

[6]

Mielke A., Renger D. R. M., and Peletier M. A., A generalization of Onsager’s reciprocity relations to gradient flows with nonlinear mobility, *J. Non-Equilib. Thermodyn*. **41** (2016), no. 2. Web of ScienceGoogle Scholar

[7]

Turkington B., An optimization principle for deriving nonequilibrium statistical models of Hamiltonian dynamics, *J. Stat. Phys*. **152** (2013), no. 3, 569–597. Web of ScienceGoogle Scholar

[8]

Öttinger H. C. and Grmela M., Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism, *Phys. Rev. E* **56** (1997), 6633–6655. Google Scholar

[9]

H. C. Öttinger, *Beyond Equilibrium Thermodynamics*, John Wiley & Sons, 2005. CrossrefGoogle Scholar

[10]

Rajagopal K. R. and A. R. Srinivasa, Mechanics of the inelastic behavior of materials. Part II: inelastic response, *Int. J. Plast*. **14** (1998), no. 10–11, 969–995. Google Scholar

[11]

Rajagopal K. R. and A. R. Srinivasa, On thermomechanical restrictions of continua, *Proc. R. Soc. London. Ser A* **460** (2004), no. 2042, 631–651. Google Scholar

[12]

Rajagopal K. R. and A. R. Srinivasa, On the thermodynamics of fluids defined by implicit constitutive relations, *Z. Angew. Math. Phys*. **59** (2008), no. 4, 715–729. Google Scholar

[13]

Ziegler H., Some extremum principles in irreversible thermodynamics with application to continuum mechanics, in: *Progress in Solid Mechanics, Vol. IV*, North-Holland, Amsterdam (1963), 91–193. Google Scholar

[14]

Ziegler H. and Wehrli C., The derivation of constitutive relations from the free energy and the dissipation function, *Adv. Appl. Mech*. **25** (1987), 183–238. CrossrefGoogle Scholar

[15]

Ziegler H. and Wehrli C., On a principle of maximal rate of entropy production, *J. Non-Equilib. Thermodyn*. **12** (1987), no. 3, 229–243. Google Scholar

[16]

Grmela M., Externally driven macroscopic systems: Dynamics versus thermodynamics, *J. Stat. Phys*. **166** (2017), no. 2, 282–316. Web of ScienceGoogle Scholar

[17]

Beretta G. P., Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle, *Phys. Rev. E* **90** (2014), 042113. Web of ScienceGoogle Scholar

[18]

Callen H., *Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics*, Wiley, 1960. CrossrefGoogle Scholar

[19]

Esen O. and Gümral H., Tulczyjew’s triplet for Lie groups I: Trivializations and reductions, *J. Lie Theo*. **24** (2014), no. 4, 1115–1160. Google Scholar

[20]

Esen O. and Gümral H., Tulczyjew’s triplet for Lie groups II: Dynamics, *J. Lie Theo*. **27** (2017), no. 2, 329–356. Google Scholar

[21]

Arnold V. I., *Mathematical Methods of Classical Mechanics*, Springer, New York, 1989. Google Scholar

[22]

Tulczyjew W. M., The Legendre transformation, *Ann. Inst. Henri Poincaré* **27** (1977), no. 1, 101–114. Google Scholar

[23]

Janečka A. and Pavelka M., Stability of non-convex gradient dynamics from the perspective of multiscale non-equilibrium thermodynamics, *ArXiv e-prints* (2017). Google Scholar

[24]

Rajagopal K. R.. On implicit constitutive theories, *Appl. Math*. **48** (2003), no. 4, 279–319. CrossrefGoogle Scholar

[25]

Grmela M., Klika V., and Pavelka M., Reductions and extensions in mesoscopic dynamics, *Phys. Rev. E* **92** (2015), 032111. Web of ScienceGoogle Scholar

[26]

Pavelka M., Klika V., and Grmela M., Time reversal in nonequilibrium thermodynamics, *Phys. Rev. E* **90** (2014), 062131. Web of ScienceGoogle Scholar

[27]

Grmela M., Multiscale equilibrium and nonequilibrium thermodynamics in chemical engineering, *Adv. Chem. Eng*. **39** (2010), 76–128. Google Scholar

[28]

de Groot S. R. and Mazur P., *Non-Equilibrium Thermodynamics*, Dover Publications, New York, 1984. Google Scholar

[29]

Hirschfelder J., Curtiss C., Bird R., and U. of Wisconsin, Theoretical Chemistry Laboratory, *Molecular Theory of Gases and Liquids*, Structure of matter series, Wiley, 1954. Google Scholar

[30]

Martyushev L. M. and Seleznev V. D., Maximum entropy production principle in physics, chemistry and biology, *Phys. Rep*. **426** (2006), no. 1, 1–45. Google Scholar

[31]

Málek J. and Pruša V., Derivation of equations for continuum mechanics and thermodynamics of fluids, in: Giga Y., Novotný A. (eds.), *Handbook of Mathematical Analysis in Mechanics of Viscous Fluids*, Springer (2017), 1–70. doi:. CrossrefGoogle Scholar

[32]

Martyushev L. M. and Seleznev V. D., The restrictions of the maximum entropy production principle, *Physica A* **410** (2014), 17–21. Web of ScienceGoogle Scholar

[33]

Hron J., Kratochvíl J., Málek J., Rajagopal K. R., and Tuma K., A thermodynamically compatible rate type fluid to describe the response of asphalt, *Math. Comput. Simul*. **82** (2012), no. 10, 1853–1873. Google Scholar

[34]

Grmela M., Fluctuations in extended mass-action-law dynamics, *Physica D* **241** (2012), no. 10, 976–986. Web of ScienceGoogle Scholar

[35]

Pavelka M., Klika V., Vágner P., and Maršík F., Generalization of exergy analysis, *Appl. Energy* **137** (2015), no. 0, 158–172. Google Scholar

[36]

Kannan K. and Rajagopal K. R., A thermodynamical framework for chemically reacting systems, *Z. Angew. Math. Phys*. **62** (2011), no. 2, 331–363. CrossrefGoogle Scholar

[37]

Carreau P. J., Rheological equations from molecular network theories, *J. Rheol*. **16** (1972), no. 1, 99–127. Google Scholar

[38]

Lee D.-R., Shear rate dependence of thermal conductivity and its effect on heat transfer in a Non-Newtonian flow system, *Korean J Chem. Eng*. **15** (1998), no. 3, 252–261. Google Scholar

[39]

de Waele A., Viscometry and plastometry, *J. Oil Colour Chem. Assoc*. **6** (1923), 33–69. Google Scholar

[40]

Ostwald W., Über die Geschwindigkeitsfunktion der Viskosität disperser Systeme. I, *Colloid Polym. Sci*. **36** (1925), 99–117. Google Scholar

[41]

Sisko A. W., The flow of lubricating greases, *Ind. Eng. Chem*. **50** (1958), no. 12, 1789–1792. CrossrefGoogle Scholar

[42]

Cross M. M.. Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, *J. Colloid Sci*. **20** (1965)no. 5, 417–437. Google Scholar

[43]

Onsager L., Reciprocal relations in irreversible processes. I, *Phys. Rev*. **37** (1931), 405–426. Google Scholar

[44]

Onsager L., Reciprocal relations in irreversible processes. II, *Phys. Rev*. **38** (1931), 2265–2279. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.