Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Non-Equilibrium Thermodynamics

Founded by Keller, Jürgen U.

Editor-in-Chief: Hoffmann, Karl Heinz

Managing Editor: Prehl, Janett / Schwalbe, Karsten

Ed. by Michaelides, Efstathios E. / Rubi, J. Miguel

4 Issues per year


IMPACT FACTOR 2016: 1.714

CiteScore 2016: 1.38

SCImago Journal Rank (SJR) 2016: 0.402
Source Normalized Impact per Paper (SNIP) 2016: 0.886

Online
ISSN
1437-4358
See all formats and pricing
More options …
Volume 43, Issue 2

Issues

A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids

Vincenzo Ciancio
  • Corresponding author
  • Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, 18980 University of Messina, viale F. Stagno d’Alcontres, 31, 98166, Messina, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Annunziata Palumbo
  • Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, 18980 University of Messina, viale F. Stagno d’Alcontres, 31, 98166, Messina, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-29 | DOI: https://doi.org/10.1515/jnet-2017-0048

Abstract

In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier’s and Newton’s laws are obtained.

Keywords: Classical irreversible thermodynamics with internal variables; heat conduction; viscous fluid; entropy principle; phenomenological equations

References

  • [1]

    W. Muschik, Why so many “schools” of thermodynamics, Atti Accad. Peloritana dei Pericolanti, Cl. Sci. Mat. Fis. Nat. LXXXVI suppl. 1 (2008), 1–24.Google Scholar

  • [2]

    L.Onsager, Reciprocal relations in irreversible processes, Phys. Rev. 37 (1931), 405–426; 38 (1931), 2265–2279.CrossrefGoogle Scholar

  • [3]

    S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962, pp. 239–303.Google Scholar

  • [4]

    C. Truesdell, Rational Thermodynamics, chap. 5, McGraw Hill, New York, 1969.Google Scholar

  • [5]

    I. Müller and T. Ruggeri, Rational Extended Thermodynamics, chaps. 3, 5, 2nd ed. Springer, Berlin, 1998.Google Scholar

  • [6]

    T. Ruggeri and M. Sugiytama, Rational Extended Thermodynamics beyond the Monatomic Gas, Springer, Cham, New York, Dordrecht, London, 2015, ISBN 978-3-319-13340-9.Google Scholar

  • [7]

    D. Jou, J. Casas-Vazquez and G. Lebon, Extended Irreversible Thermodynamics, chaps. 2, 10, 16, 4th ed. Springer-Verlag, Berlin, 2010.Google Scholar

  • [8]

    G. Lebon, D. Jou and J. Casas-Vazquez, Understanding Non-Equilibrium Thermodynamics, Springer-Verlag, Berlin, Heidelberg, 2008.Google Scholar

  • [9]

    G. Lebon, M. Grmela and D. Lhuiller, A comparative study of the coupling of flow with non-Fickean thermodiffusion. Part I: Extended irreversible thermodynamics, J. Non-Equilib. Thermodyn. 28 (2003), 1–22.CrossrefGoogle Scholar

  • [10]

    H. C. Öttinger and M. Grmela, Dynamics and thermodynamics of complex fluids.II. Illustrations of a GENERIC formalism, Phys. Rev. E56 (1997), 6633–6655.Google Scholar

  • [11]

    M. Grmela, G. Lebon and D. Lhuiller, A comparative study of the coupling of flow with non-Fickean thermodiffusion. Part II: Generic, J. Non-Equilib. Thermodyn. 28 (2003), 23–50.Google Scholar

  • [12]

    D. Lhuiller, M. Grmela and G. Lebon, A comparative study of the coupling of flow with non-Fickean thermodiffusion. Part III: Internal variables, J. Non-Equilib. Thermodyn. 28 (2003), 51–68.Google Scholar

  • [13]

    G. A. Kluitenberg, On heat dissipation due to irreversible mechanical phenomena in continuous media. Physica A 35 (1967), 117–192.Google Scholar

  • [14]

    G. A. Kluitenberg, On vectorial internal variables and dielectric and magnetic relaxation phenomena, Physica A 109 (1981), 91–122.CrossrefGoogle Scholar

  • [15]

    G. A. Kluitenberg, Plasticity and Non-Equilibrium Thermodynamics, CISM Lecture Notes, Springer-Verlag, Wien, New York, 1984.Google Scholar

  • [16]

    V. Ciancio, On the generalized Debye equation for media with dielectric relaxation phenomena described by vectorial internal variables, J. Non-Equilib. Thermodyn. 14 (1989), 239–250.Google Scholar

  • [17]

    V. Ciancio and G. A. Kluitenberg, On electromagnetic waves in isotropic media with dielectric relaxation, Acta Phys. Hung. 66(1–4) (1989), 251–276.Google Scholar

  • [18]

    V. Ciancio, L. Restuccia and G. A. Kluitenberg, A thermodynamic derivation of equations for dielectric relaxation phenomena in anisotropic polarizable media, J. Non-Equilib. Thermodyn. 15 (1990), 151–171.Google Scholar

  • [19]

    G. A. Maugin, Internal variables and dissipative structures, J. Non-Equilib. Thermodyn. 15 (1990), 173–192.Google Scholar

  • [20]

    A. Palumbo, C. Papenfuss and P. Rogolino, A mesoscopic approach to diffusion phenomena in mixtures, J. Non-Equilib. Thermodyn. 30 (2005), 401–419.Google Scholar

  • [21]

    M. Francaviglia, A. Palumbo and P. Rogolino, Thermodynamics of mixture as a problem with internal variables. The general theory, J. Non-Equilib. Thermodyn. 30 (2006), 419–429.Google Scholar

  • [22]

    M. Francaviglia, A. Palumbo and P. Rogolino, Internal variables thermodynamics of two component mixtures under linear constitutive hypothesis with an application to superfluid helium, J. Non-Equilib. Thermodyn. 30 (2006), 419–429.Google Scholar

  • [23]

    G. A. Kluitenberg and V. Ciancio, On linear dynamical equations of state for isotropic media I- General formalism, Physica A 93 (1978), 273–286.CrossrefGoogle Scholar

  • [24]

    V. Ciancio and G. A. Kluitenberg, On linear dynamical equations of state for isotropic media II. Some cases of special interest, Physica A 99 (1979), 592–600.CrossrefGoogle Scholar

  • [25]

    V. Ciancio and J. Verhás, A thermodynamic theory for radiating heat transfer, J. Non-Equilib. Thermodyn. 15 (1990), 33–43.Google Scholar

  • [26]

    V. Ciancio and J. Verhás, A thermodynamic theory for heat radiation through the atmosphere, J. Non-Equilib. Thermodyn. 16 (1991), 57–65.Google Scholar

  • [27]

    V. Ciancio, F. Farsaci and G. A. Bartolotta, Phenomenological and state coefficients in viscoanelastic medium of order one (with memory), Comput. Sci. Appl. ICCSA 3980 (2006), 821–827.Google Scholar

  • [28]

    V. Ciancio, A. Bartolotta and F.Farsaci, Experimental confirmation on a thermodynamical theory for viscoanelastic media with memory, Physica B, Condens. Matter, 394(1–2) (2007), 8–13.CrossrefGoogle Scholar

  • [29]

    A.Ciancio, V.Ciancio and F.Farsaci, Wave propagation in media obeying a thermoviscoanelastic model, Sci. Bull. “Politeh.” Univ. Buchar., Ser. A, Appl. Math. Phys. 69(4) (2007), 69–79. ISSN: 1223-7027.Google Scholar

  • [30]

    V.Ciancio, A.Ciancio and F.Farsaci, On general properties of phenomenological and state coefficients for isotropic viscoanelastic media, Physica B, Condens. Matter 403 (2008), 3221–3227. ISSN: 0921-4526.CrossrefGoogle Scholar

  • [31]

    A. Ciancio, An approximate evaluation of the phenomenological and state coefficients for visco-anelastic media with memory, Sci. Bull. “Politeh.” Univ. Buchar., Ser. A, Appl. Math. Phys. 73(4) (2011), 3–14.Google Scholar

  • [32]

    V. Ciancio and L. Restuccia, On heat equation in the framework of classic irreversible thermodynamics with internal variables, Int. J. Geom. Methods Mod. Phys. 13 (2016), (11 pages), DOI: .CrossrefGoogle Scholar

  • [33]

    V. Ciancio and A. Palumbo, A thermodynamic theory with hidden vectorial variables on possible interactions among heat conduction, diffusion phenomena, viscous flow and chemical reaction in fluid mixture, in: Thermocon 2016, International Conference and Summerschool, Thermal Theories of Continua: Survey and Developments, Messina April 19–22, 2016, Italy (2016), (18 pages).Google Scholar

  • [34]

    P. Ván and T. Fülöp, Universality in heat conduction theory: weakly nonlocal thermodynamics, Ann. Phys. 524(8), (2012), 470–478.CrossrefGoogle Scholar

  • [35]

    I. Müller, On the entropy inequality, Arch. Ration. Mech. Anal. 26(2) (1967), 118–141.CrossrefGoogle Scholar

  • [36]

    G. Lebon, Heat conduction at micro and nanoscales: A review through the prism of extended irreversible thermodynamic, J. Non-Equilib. Thermodyn. 39(1) (2014), 35–59.Google Scholar

  • [37]

    D. Jou and L. Restuccia, Mesoscopic transport equations and contemporary thermodynamics: An introduction, Contemp. Phys. 52(5) (2011), 465–474.CrossrefGoogle Scholar

  • [38]

    G. Lebon, D. Jou and J. Casas-Vazquez, Heat conduction at low temperature a non-linear generalization of the Guyer–Krumhansl equation, Period. Polytechn. Ser. Chem. Eng., 41(2) (1997), 185–196.Google Scholar

  • [39]

    N. Kalospiros, B. J. Edwards and A. N. Beris, Internal variables for relaxation phenomena in heat and mass transfer, Int. J. Heat Mass Transf. 36 (1993), 1191–1200.CrossrefGoogle Scholar

  • [40]

    J. Verhás, On the entropy current, J. Non-Equilib. Thermodyn. 8 (1983), 201–206.Google Scholar

  • [41]

    B.Nyíri, On the entropy current, J. Non-Equilib. Thermodyn. 16 (1991), 179–186.Google Scholar

  • [42]

    J. Fourier, Analytical Theory of Heat, Cambridge University Press, Cambridge, 1878.Google Scholar

  • [43]

    C. Cattaneo, Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ. Modena 3 (1948), 83–101.Google Scholar

  • [44]

    P. Vernott, La veritable équation de la chaleur, Philos. Trans. R. Soc. Lond. 157 (1867), 49–88.Google Scholar

  • [45]

    R. A. Guyer and J. A. Krumhansl, Solution on the linearized Boltzmann phonon equation, Phys. Rev. 148 (1966), 766–778.CrossrefGoogle Scholar

  • [46]

    R. A. Guyer and J. A. Krumhansl, Thermal conductivity, second sound and phonon hydrodynamic phenomena in non-metallic crystals, Phys. Rev. 148 (1966), 778–788.CrossrefGoogle Scholar

  • [47]

    D. D. Joseph and L. Preziosi, Heat waves, Rev. Mod. Phys. 61, 41–74 (1989); 62 (1990), 375–392.CrossrefGoogle Scholar

  • [48]

    A. E. Green and P. M. Naghdi, A re-examination of basic postulates of thermomechanics, R. Soc. Math. Phys. Sci. 61 (1989), 41–74; 62 (1990), 375–392.Google Scholar

  • [49]

    M.Morse, Relation between the critical points of a real function of n independent variables, Trans. Am. Math. Soc. 27 (1925), 345–396.Google Scholar

  • [50]

    I. Gyarmati, On the wave approach of thermodynamics and some problems of non-linear theories, J. Non-Equilib. Thermodyn. 2 (1977), 233–260.Google Scholar

  • [51]

    G. F. Smith, On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9 (1971), 899–916.CrossrefGoogle Scholar

  • [52]

    H. Jeffreys, Cartesian Tensor, Cambridge University Press, Cambridge, 1957.Google Scholar

  • [53]

    J. C. Maxwell, On the dynamical theory of gases, C. R. Acad. Sci. Paris 2477 (1958), 2103–2107.Google Scholar

About the article

Received: 2017-10-06

Revised: 2018-02-18

Accepted: 2018-02-20

Published Online: 2018-03-29

Published in Print: 2018-04-25


This paper was supported by National Group of Mathematical Physics GNFM-INdAM (Italy).


Citation Information: Journal of Non-Equilibrium Thermodynamics, Volume 43, Issue 2, Pages 171–184, ISSN (Online) 1437-4358, ISSN (Print) 0340-0204, DOI: https://doi.org/10.1515/jnet-2017-0048.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in