[1]

S. Vajda, P. Valko, and T. Turanyi, Principal component analysis of kinetic models, *Int. J. Chem. Kinet.* 17 (1985), 55–81.CrossrefGoogle Scholar

[2]

S. H. Lam and D. A. Goussis, Understanding complex chemical kinetics with computational singular perturbation, *Symp., Int., Combust.* 22 (1988), 931–941.Google Scholar

[3]

S. J. Fraser, The steady state and equilibrium approximations: A geometrical picture, *J. Chem. Phys.* 88 (1988), 4732–4738.CrossrefGoogle Scholar

[4]

R. Law, M. Metghalchi, and J. C. Keck, Rate-controlled constrained equilibrium calculation of ignition delay times in hydrogen-oxygen mixtures, *Symp., Int., Combust.* 22 (1989), 1705–1713.CrossrefGoogle Scholar

[5]

J. C. Keck, Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems, *Prog. Energy Combust. Sci.* 16 (1990), 125–154.CrossrefGoogle Scholar

[6]

M. R. Roussel and S. J. Fraser, On the geometry of transient relaxation, *J. Chem. Phys.* 94 (1991), 7106–7113.CrossrefGoogle Scholar

[7]

U. Maas and S. B. Pope, Simplifying chemical kinetics – Intrinsic low dimensional manifolds in composition space, *Combust. Flame* 88 (1992), 239–264.CrossrefGoogle Scholar

[8]

G. Li, A. S. Tomlin, H. Rabitz, and J. Tóth, Determination of approximate lumping schemes by a singular perturbation method, *J. Chem. Phys.* 99 (1993), 3562–3574.CrossrefGoogle Scholar

[9]

S. Singh, J. M. Powers, and S. Paolucci, On slow manifolds of chemically reactive systems, *J. Chem. Phys.* 117 (2002), 1482–1496.CrossrefGoogle Scholar

[10]

E. L. Haseltine and J. B. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetic, *J. Chem. Phys.* 117 (2002), 6959–6969.CrossrefGoogle Scholar

[11]

A. N. Gorban and I. V. Karlin, Method of invariant manifold for chemical kinetics, *Chem. Eng. Sci.* 58 (2003), 4751–4768.CrossrefGoogle Scholar

[12]

D. Lebiedz, Computing minimal entropy production trajectories: An approach to model reduction in chemical kinetics, *J. Chem. Phys.* 120 (2004), 6890–6897.CrossrefGoogle Scholar

[13]

M. Valorani, F. Creta, D. A. Goussis, J. C. Lee, and H. N. Najm, An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP, *Combust. Flame* 146 (2006), 29–51.CrossrefGoogle Scholar

[14]

E. Chiavazzo, A. N. Gorban, and I. V. Karlin, Comparison of invariant manifolds for model reduction in chemical kinetics, *Commun. Comput. Phys.* 2 (2007), 964–992.Google Scholar

[15]

A. N. Al-Khateeb, J. M. Powers, S. Paolucci, A. J. Sommese, J. A. Diller, J. D. Hauenstein, et al.,One-dimensional slow invariant manifolds for spatially homogenous reactive systems, *J. Chem. Phys.* 131 (2009), 024118.Google Scholar

[16]

G. P. Beretta, J. C. Keck, M. Janbozorgi, and H. Metghalchi, The rate-controlled constrained-equilibrium approach to far-from-local-equilibrium thermodynamics, *Entropy* 14 (2012), 92–130.CrossrefGoogle Scholar

[17]

E. P. Gyftopoulos and G. P. Beretta, Entropy generation rate in a chemically reacting system, *J. Energy Resour. Technol.* 115 (1993), 208–212.CrossrefGoogle Scholar

[18]

J. C. Keck and D. Gillespie, Rate-controlled partial-equilibrium method for treating reacting gas mixtures, *Combust. Flame* 17 (1971), 237–241.CrossrefGoogle Scholar

[19]

J. C. Keck, Rate-controlled constrained equilibrium method for treating reactions in complex systems, in: R. D. Levine, M. Tribus (Eds.), *The Maximum Entropy Formalism*, MIT Press, Cambridge, MA, 1979, pp. 219–245. Available online at www.jameskeckcollectedworks.org/.Google Scholar

[20]

G. P. Beretta and J. C. Keck, The constrained-equilibrium approach to nonequilibrium dynamics, in: R. A. Gaggioli (Ed.), *Second Law Analysis and Modeling*, ASME Book H0341C-AES, Vol. 3, ASME, New York, 1986, pp. 135–139. Available online at www.jameskeckcollectedworks.org/.Google Scholar

[21]

K. C. Chen, A. Csikász-Nagy, B. Gyorffy, J. Val, B. Novák, and J. J. Tyson, Kinetic analysis of a molecular model of the budding yeast cell cycle, *Mol. Biol. Cell* 11 (2000), 369–391.CrossrefGoogle Scholar

[22]

A. Lovrics, A. Csikász-Nagy, I. G. Zsély, J. Zádor, T. Turányi, and B. Novák, Time scale and dimension analysis of a budding yeast cell cycle model, *BMC Bioinform.* 7 (2006), 494.CrossrefGoogle Scholar

[23]

I. Surovtsova, N. Simus, T. Lorenz, A. König, S. Sahle, and U. Kummer, Accessible methods for the dynamic time-scale decomposition of biochemical systems, *Bioinformatics* 25 (2009), 2816–2823.CrossrefGoogle Scholar

[24]

A. I. Karpov, Minimal entropy production as an approach to the prediction of the stationary rate of flame propagation, *J. Non-Equilib. Thermodyn.* 17 (1992), 1–10.CrossrefGoogle Scholar

[25]

V. Yousefian, A rate-controlled constrained-equilibrium thermochemistry algorithm for complex reacting systems, Combust. Flame 115 (1998), 66–80.CrossrefGoogle Scholar

[26]

Q. Tang and S. B. Pope, Implementation of combustion chemistry by in situ adaptive tabulation of rate-controlled constrained equilibrium manifolds, *Proc. Combust. Inst.* 29 (2002), 1411–1417.CrossrefGoogle Scholar

[27]

Q. Tang and S. B. Pope, A more accurate projection in the rate-controlled constrained equilibrium method for dimension reduction of combustion chemistry, *Combust. Theory Model.* 8 (2004), 255–279.CrossrefGoogle Scholar

[28]

S. Rigopoulos and T. Løvås, A LOI-RCCE methodology for reducing chemical kinetics, with application to laminar premixed flames, *Proc. Combust. Inst.* 32 (2009), 569–576.CrossrefGoogle Scholar

[29]

T. Løvås, S. Navarro-Martinez, and S. Rigopoulos, On adaptively reduced chemistry in large eddy simulations, *Proc. Combust. Inst.* 33 (2011), 1339–1346.CrossrefGoogle Scholar

[30]

V. Hiremath and S. B. Pope, A study of the rate-controlled constrained-equilibrium dimension reduction method and its different implementations, *Combust. Theory Model.* 17 (2013), 260–293.CrossrefGoogle Scholar

[31]

F. Hadi and M. R. H. Sheikhi, A comparison of constraint and constraint potential forms of the Rate-Controlled Constraint-Equilibrium method, *J. Energy Resour. Technol.* 138 (2015), 022202.Google Scholar

[32]

F. Hadi, M. Janbozorgi, M. R. H. Sheikhi, and H. Metghalchi, A study of interactions between mixing and chemical reaction using the Rate-Controlled Constrained-Equilibrium method, *J. Non-Equilib. Thermodyn.* 41 (2016), 257–278.Google Scholar

[33]

F. Hadi, V. Yousefian, M. R. H. Sheikhi, and H. Metghalchi, Time scale analysis for Rate-Controlled Constrained-Equilibrium constraint selection, in: *Proceedings of the 10th U.S. National Combustion Meeting, Eastern States Section of the Combustion Institute*, College Park, Maryland, April 23–26, 2017, 1–6.Google Scholar

[34]

G. P. Beretta, M. Janbozorgi, and H. Metghalchi, Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method, *Combust. Flame* 168 (2016), 342–364.CrossrefGoogle Scholar

[35]

H. C. Ottinger, General projection operator formalism for the dynamics and thermodynamics of complex fluids, *Phys. Rev. E* 57 (2015), 1416–1420.Google Scholar

[36]

G. P. Beretta, Steepest Entropy Ascent model for far-non-equilibrium thermodynamics. Unified implementation of the Maximum Entropy Production Principle, *Phys. Rev. E* 90 (2014), 042113.Google Scholar

[37]

A. Montefusco, F. Consonni, and G. P. Beretta, Essential equivalence of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium thermodynamics, *Phys. Rev. E* 91 (2015), 042138.Google Scholar

[38]

S. Cano-Andrade, G. P. Beretta, and M. R. von Spakovsky, Steepest-entropy-ascent quantum thermodynamic modeling of decoherence in two different microscopic composite systems, *Phys. Rev. A* 91 (2015), 013848.Google Scholar

[39]

G. Li and M. R. von Spakovsky, Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state, *Phys. Rev. E* 93 (2016), 012137.Google Scholar

[40]

G. Lebon, D. Jou, and M. Grmela, Extended reversible and irreversible thermodynamics: A Hamiltonian approach with application to heat waves, *J. Non-Equilib. Thermodyn.* 42 (2017), 153–168.Google Scholar

[41]

G. Li, M. R. von Spakovsky, and C. Hin, Steepest entropy ascent quantum thermodynamic model of electron and phonon transport, *Phys. Rev. B* 97 (2018), 024308.Google Scholar

[42]

G. P. Beretta and E. P. Gyftopoulos, What is a chemical equilibrium state? J. Energy Resour. Technol. 137 (2015), 021008.Google Scholar

[43]

G. P. Beretta and J. C. Keck, Energy and entropy balances in a combustion chamber. Analytical solution, *Combust. Sci. Technol.* 30 (1983), 19–29.CrossrefGoogle Scholar

[44]

G. P. Beretta, M. Janbozorgi, and H. Metghalchi, Use of degree of disequilibrium analysis to select kinetic constraints for the Rate-Controlled Constrained-Equilibrium (RCCE) method, in: *Proceedings of ECOS 2015 – The 28th International Conference On Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems*, Pau, France, June 30–July 3, 2015. Available online at www.gianpaoloberetta.info/.Google Scholar

[45]

L. Rivadossi and G. P. Beretta, Validation of the ASVDADD constraint selection algorithm for effective RCCE modeling of natural gas ignition in air, in: *Proceedings of IMECE2016 – the ASME 2016 International Mechanical Engineering Congress and Exposition*, November 11–17, 2016, Phoenix, Arizona, USA – paper IMECE2016-65323. Available online at www.gianpaoloberetta.info/ https://doi.org/10.1115/IMECE2016-65323.Google Scholar

[46]

G. P. Beretta, Nonlinear quantum evolution equations to model irreversible adiabatic relaxation with maximal entropy production and other nonunitary processes, *Rep. Math. Phys.* 64 (2009), 139–168.CrossrefGoogle Scholar

[47]

M. Valorani, D. A. Goussis, F. Creta, and H. N. Najm, Higher order corrections in the approximation of inertial manifolds and the construction of simplified problems with the CSP method, *J. Comput. Phys.* 209 (2005), 754–786.CrossrefGoogle Scholar

[48]

D. Lebiedz, V. Reinhardt, and J. Siehr, Minimal curvature trajectories: Riemannian geometry concepts for slow manifold computation in chemical kinetics, *J. Comp. Physiol.* 229 (2010), 6512–6533.CrossrefGoogle Scholar

[49]

D. Lebiedz, J. Siehr, and J. Unger, A variational principle for computing slow invariant manifolds in dissipative dynamical systems, *SIAM J. Sci. Comput.* 33 (2011), 703–720.CrossrefGoogle Scholar

[50]

C. D. Martin and M. A. Porter, The extraordinary SVD, *Am. Math. Mon.* 119 (2012), 838–851.CrossrefGoogle Scholar

[51]

M. Janbozorgi and H. Metghalchi, Rate-Controlled Constrained-Equilibrium Modeling of H-O Reacting Nozzle Flow, *J. Propuls. Power* 28 (2012), 677–684.CrossrefGoogle Scholar

[52]

L. Rivadossi and G. P. Beretta, Validation of the ASVDADD constraint selection algorithm for effective RCCE modeling of natural gas ignition in air, *J. Energy Resour. Technol.* 140 (2018), 052201.Google Scholar

[53]

P. D. Kourdis, R. Steuer, and D. A. Goussis, Physical understanding of complex multiscale biochemical models via algorithmic simplification: Glycolysis in saccharomyces cerevisiae, *Physica D* 239 (2010), 1798–1817.CrossrefGoogle Scholar

[54]

V. Damioli, G. P. Beretta, A. Salvadori, C. Ravelli, and S. Mitola, Multi-physics interactions drive VEGFR2 relocation on endothelial cells, *Scientific Reports* 7 (2017), 16700.Google Scholar

[55]

E. A. Piana, S. Uberti, A. Copeta, B. Motyl, and G. Baronio, An integrated acoustic–mechanical development method for off-road motorcycle silencers: from design to sound quality test, *Int. J. Interact. Des. Manuf.* (2018). https://doi.org/10.1007/s12008-018-0464-x.Google Scholar

[56]

E. A. Piana, B. Grassi, F. Bianchi, and C. Pedrotti, Hydraulic balancing strategies: A case-study of radiator-based central heatig systems, *Building Serv. Eng. Res. Technol.* (2018). https://doi.org/10.1177/0143624417752830.Google Scholar

[57]

G. P. Beretta, Modeling non-equilibrium dynamics of a discrete probability distribution: General rate equation for maximal entropy generation in a maximum-entropy landscape with time-dependent constraints, *Entropy* 10 (2008), 160–182.CrossrefGoogle Scholar

[58]

L. M. Martyushev and V. D. Seleznev, Maximum entropy production: application to crystal growth and chemical kinetics, *Current Opinion in Chemical Engineering* 7 (2015), 23–31.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.